Timezone: »
Goal:
Extracting knowledge from Web pages, and integrating it into a coherent knowledge base (KB) is a task that spans the areas of natural language processing, information extraction, information integration, databases, search, and machine learning. Recent years have seen significant advances here, both in academia and in the industry. Most prominently, all major search engine providers (Yahoo!, Microsoft Bing, and Google) nowadays experiment with semantic KBs. Our workshop serves as a forum for researchers on knowledge base construction in both academia and industry.
Unlike many other workshops, our workshop puts less emphasis on conventional paper submissions and presentations, but more on visionary papers and discussions. In addition, one of its unique characteristics is that it is centered on keynotes by high-profile speakers. AKBC 2010, AKBC 2012, and AKBC 2013 each had a dozen invited talks from leaders in this area from academia, industry, and government agencies. We had senior invited speakers from Google, Microsoft, Yahoo, several leading universities (MIT, University of Washington, CMU, University of Massachusetts, and more), and DARPA. With this year’s proposal, we would like to resume this positive experience. By inviting established researchers for keynotes, and by focusing particularly on vision paper submissions, we aim to provide a vivid forum of discussion about the field of automated knowledge base construction.
Topics of interest:
* machine learning on text; unsupervised, lightly-supervised and distantly-supervised learning; learning from naturally-available data.
* human-computer collaboration in knowledge base construction; automated population of wikis.
* inference for graphical models and structured prediction; scalable approximate inference.
* information extraction; open information extraction, named entity extraction; ontology construction;
* entity resolution, relation extraction, information integration; schema alignment; ontology alignment; monolingual alignment, alignment between knowledge bases and text;
* pattern analysis, semantic analysis of natural language, reading the web, learning by reading
databases; distributed information systems; probabilistic databases;
* scalable computation; distributed computation.
* queries on mixtures of structured and unstructured data; querying under uncertainty;
* dynamic data, online/on-the-fly adaptation of knowledge.
* languages, toolkits and systems for automated knowledge base construction.
* demonstrations of existing automatically-built knowledge bases.
Audience:
AKBC 2012 and AKBC 2013 attracted 70-100 participants. These were researchers from academia, industry, and government, as well as students. The workshop brought together people from the areas of natural language processing, machine learning, and information extraction. We would expect a similar composition of the audience also for AKBC 2014. Since our keynote talks are given by very senior researchers (usually the coordinators of entire scientific projects), the talks are usually high-level and easily understandable. Therefore, we are confident that the workshop will be of interest also to novices in the area or first year students, who wish to get an overview of the automated KB construction. At the same time, the high calibre of our speakers is almost certain to attract established researchers who wish to get a survey of the latest developments in the field. The vision papers, too, play their role in attracting the audience, as these papers are deliberately designed to provoke thought and discussion from domain experts and novices to the field alike.
Author Information
Sameer Singh (University of California, Irvine)
Fabian M Suchanek (Paris-Saclay University)
Sebastian Riedel (University College London)
Partha Pratim Talukdar (Indian Institute of Science (IISc))
Kevin Murphy (Google)
Christopher Ré (Stanford)
William Cohen (Google AI)
Tom Mitchell (Carnegie Mellon University)
Andrew McCallum (UMass Amherst)
Jason E Weston (Meta AI)
Jason Weston received a PhD. (2000) from Royal Holloway, University of London under the supervision of Vladimir Vapnik. From 2000 to 2002, he was a researcher at Biowulf technologies, New York, applying machine learning to bioinformatics. From 2002 to 2003 he was a research scientist at the Max Planck Institute for Biological Cybernetics, Tuebingen, Germany. From 2004 to June 2009 he was a research staff member at NEC Labs America, Princeton. From July 2009 onwards he has been a research scientist at Google, New York. Jason Weston's current research focuses on various aspects of statistical machine learning and its applications, particularly in text and images.
Ramanathan Guha (Google)
Boyan Onyshkevych (DARPA)
Hoifung Poon (Microsoft Research)
Oren Etzioni (University of Washington)
Ari Kobren (Oracle Labs)
Arvind Neelakantan (Google)
Peter Clark (Allen Institute for AI)
More from the Same Authors
-
2020 : Invited Talk 4 Presentation - Jason Weston - (Towards) Learning from Conversing »
Jason E Weston -
2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré -
2021 Spotlight: Hash Layers For Large Sparse Models »
Stephen Roller · Sainbayar Sukhbaatar · arthur szlam · Jason Weston -
2021 : CSFCube - A Test Collection of Computer Science Research Articles for Faceted Query by Example »
Sheshera Mysore · Tim O'Gorman · Andrew McCallum · Hamed Zamani -
2021 : SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation »
Arjun Desai · Andrew Schmidt · Elka Rubin · Christopher Sandino · Marianne Black · Valentina Mazzoli · Kathryn Stevens · Robert Boutin · Christopher Ré · Garry Gold · Brian Hargreaves · Akshay Chaudhari -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2021 : Combining Recurrent, Convolutional, and Continuous-Time Models with Structured Learnable Linear State-Space Layers »
Isys Johnson · Albert Gu · Karan Goel · Khaled Saab · Tri Dao · Atri Rudra · Christopher Ré -
2022 : Learning to Reason and Memorize with Self-Questioning »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2022 : Learn to Select Good Examples with Reinforcement Learning for Semi-structured Mathematical Reasoning »
Pan Lu · Liang Qiu · Kai-Wei Chang · Ying Nian Wu · Song-Chun Zhu · Tanmay Rajpurohit · Peter Clark · Ashwin Kalyan -
2022 : LILA: A Unified Benchmark for Mathematical Reasoning »
Swaroop Mishra · Matthew Finlayson · Pan Lu · Leonard Tang · Sean Welleck · Chitta Baral · Tanmay Rajpurohit · Oyvind Tafjord · Ashish Sabharwal · Peter Clark · Ashwin Kalyan -
2022 : Reliability benchmarks for image segmentation »
Estefany Kelly Buchanan · Michael Dusenberry · Jie Ren · Kevin Murphy · Balaji Lakshminarayanan · Dustin Tran -
2022 : Quantifying Social Biases Using Templates is Unreliable »
Preethi Seshadri · Pouya Pezeshkpour · Sameer Singh -
2022 : TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 : Contributed Talk: TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 Spotlight: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 : Towards Systematic Reasoning with Language Models »
Peter Clark -
2022 : Invited Keynote by Jason Weston »
Jason Weston -
2022 : Learning to Reason and Memorize with Self-Questioning »
Jack Lanchantin · Shubham Toshniwal · Jason E Weston · arthur szlam · Sainbayar Sukhbaatar -
2022 Poster: On the Parameterization and Initialization of Diagonal State Space Models »
Albert Gu · Karan Goel · Ankit Gupta · Christopher Ré -
2022 Poster: Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data »
Armin Thomas · Christopher Ré · Russell Poldrack -
2022 Poster: Autoregressive Search Engines: Generating Substrings as Document Identifiers »
Michele Bevilacqua · Giuseppe Ottaviano · Patrick Lewis · Scott Yih · Sebastian Riedel · Fabio Petroni -
2022 Poster: Modeling Transitivity and Cyclicity in Directed Graphs via Binary Code Box Embeddings »
Dongxu Zhang · Michael Boratko · Cameron Musco · Andrew McCallum -
2022 Poster: HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions »
Lingjiao Chen · Zhihua Jin · Evan Sabri Eyuboglu · Christopher Ré · Matei Zaharia · James Zou -
2022 Poster: ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective »
Yihong Chen · Pushkar Mishra · Luca Franceschi · Pasquale Minervini · Pontus Lars Erik Saito Stenetorp · Sebastian Riedel -
2022 Poster: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Dan Fu · Stefano Ermon · Atri Rudra · Christopher Ré -
2022 Poster: Staircase Attention for Recurrent Processing of Sequences »
Da JU · Stephen Roller · Sainbayar Sukhbaatar · Jason E Weston -
2022 Poster: Contrastive Adapters for Foundation Model Group Robustness »
Michael Zhang · Christopher Ré -
2022 Poster: Decentralized Training of Foundation Models in Heterogeneous Environments »
Binhang Yuan · Yongjun He · Jared Davis · Tianyi Zhang · Tri Dao · Beidi Chen · Percy Liang · Christopher Ré · Ce Zhang -
2022 Poster: Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Ré · Stefano Ermon -
2022 Poster: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 Poster: S4ND: Modeling Images and Videos as Multidimensional Signals with State Spaces »
Eric Nguyen · Karan Goel · Albert Gu · Gordon Downs · Preey Shah · Tri Dao · Stephen Baccus · Christopher Ré -
2022 Poster: Fine-tuning Language Models over Slow Networks using Activation Quantization with Guarantees »
Jue WANG · Binhang Yuan · Luka Rimanic · Yongjun He · Tri Dao · Beidi Chen · Christopher Ré · Ce Zhang -
2022 Poster: Structured Energy Network As a Loss »
Jay Yoon Lee · Dhruvesh Patel · Purujit Goyal · Wenlong Zhao · Zhiyang Xu · Andrew McCallum -
2022 Poster: Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering »
Pan Lu · Swaroop Mishra · Tanglin Xia · Liang Qiu · Kai-Wei Chang · Song-Chun Zhu · Oyvind Tafjord · Peter Clark · Ashwin Kalyan -
2021 : Panel Discussion »
Pascal Poupart · Ali Ghodsi · Luke Zettlemoyer · Sameer Singh · Kevin Duh · Yejin Choi · Lu Hou -
2021 : How to Win LMs and Influence Predictions: Using Short Phrases to Control NLP Models »
Sameer Singh -
2021 : Cutting Down on Prompts and Parameters:Simple Few-Shot Learning with Language Models »
Robert Logan · Ivana Balazevic · Eric Wallace · Fabio Petroni · Sameer Singh · Sebastian Riedel -
2021 Poster: Capacity and Bias of Learned Geometric Embeddings for Directed Graphs »
Michael Boratko · Dongxu Zhang · Nicholas Monath · Luke Vilnis · Kenneth L Clarkson · Andrew McCallum -
2021 Poster: Hash Layers For Large Sparse Models »
Stephen Roller · Sainbayar Sukhbaatar · arthur szlam · Jason Weston -
2021 Poster: Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers »
Albert Gu · Isys Johnson · Karan Goel · Khaled Saab · Tri Dao · Atri Rudra · Christopher Ré -
2021 Poster: Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Anna Hilgard · Sameer Singh · Himabindu Lakkaraju -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Poster: Rethinking Neural Operations for Diverse Tasks »
Nicholas Roberts · Mikhail Khodak · Tri Dao · Liam Li · Christopher Ré · Ameet Talwalkar -
2021 Poster: Counterfactual Explanations Can Be Manipulated »
Dylan Slack · Anna Hilgard · Himabindu Lakkaraju · Sameer Singh -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2020 Workshop: Wordplay: When Language Meets Games »
Prithviraj Ammanabrolu · Matthew Hausknecht · Xingdi Yuan · Marc-Alexandre Côté · Adam Trischler · Kory Mathewson @korymath · John Urbanek · Jason Weston · Mark Riedl -
2020 : Panel »
Maxine Eskenazi · Ankur Parikh · Govindarajan Thattai · Alexander Rudnicky · Jason E Weston -
2020 : Invited Talk 4 Q/A - Jason Weston »
Jason E Weston -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher Ré · Will Hamilton -
2020 Memorial: In Memory of Olivier Chapelle »
Bernhard Schölkopf · Andre Elisseeff · Olivier Bousquet · Vladimir Vapnik · Jason E Weston -
2020 Poster: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Poster: Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason Over Implicit Knowledge »
Alon Talmor · Oyvind Tafjord · Peter Clark · Yoav Goldberg · Jonathan Berant -
2020 Spotlight: Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason Over Implicit Knowledge »
Alon Talmor · Oyvind Tafjord · Peter Clark · Yoav Goldberg · Jonathan Berant -
2020 Spotlight: HiPPO: Recurrent Memory with Optimal Polynomial Projections »
Albert Gu · Tri Dao · Stefano Ermon · Atri Rudra · Christopher Ré -
2020 Oral: Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent »
Benjamin Recht · Christopher Ré · Stephen Wright · Feng Niu -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities Q&A »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2020 Poster: From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical Clustering »
Ines Chami · Albert Gu · Vaggos Chatziafratis · Christopher Ré -
2020 Poster: Improving Local Identifiability in Probabilistic Box Embeddings »
Shib Dasgupta · Michael Boratko · Dongxu Zhang · Luke Vilnis · Xiang Li · Andrew McCallum -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Tom Mitchell - Understanding Neural Processes: Getting Beyond Where and When, to How »
Tom Mitchell -
2019 : Opening Remarks »
Manzil Zaheer · Nicholas Monath · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov · Andrew McCallum -
2019 Workshop: Sets and Partitions »
Nicholas Monath · Manzil Zaheer · Andrew McCallum · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov -
2019 : Andrew McCallum: Learning DAGs and Trees with Box Embeddings and Hyperbolic Embeddings »
Andrew McCallum -
2019 : Tom Mitchell »
Tom M Mitchell -
2019 Workshop: KR2ML - Knowledge Representation and Reasoning Meets Machine Learning »
Veronika Thost · Christian Muise · Kartik Talamadupula · Sameer Singh · Christopher Ré -
2019 Poster: Search-Guided, Lightly-Supervised Training of Structured Prediction Energy Networks »
Amirmohammad Rooshenas · Dongxu Zhang · Gopal Sharma · Andrew McCallum -
2019 Poster: Offline Contextual Bandits with High Probability Fairness Guarantees »
Blossom Metevier · Stephen Giguere · Sarah Brockman · Ari Kobren · Yuriy Brun · Emma Brunskill · Philip Thomas -
2019 Poster: On the Downstream Performance of Compressed Word Embeddings »
Avner May · Jian Zhang · Tri Dao · Christopher Ré -
2019 Spotlight: On the Downstream Performance of Compressed Word Embeddings »
Avner May · Jian Zhang · Tri Dao · Christopher Ré -
2019 Poster: Multi-Resolution Weak Supervision for Sequential Data »
Paroma Varma · Frederic Sala · Shiori Sagawa · Jason A Fries · Dan Fu · Saelig Khattar · Ashwini Ramamoorthy · Ke Xiao · Kayvon Fatahalian · James Priest · Christopher Ré -
2019 Poster: Slice-based Learning: A Programming Model for Residual Learning in Critical Data Slices »
Vincent Chen · Sen Wu · Alexander Ratner · Jen Weng · Christopher Ré -
2019 Poster: Learning Data Manipulation for Augmentation and Weighting »
Zhiting Hu · Bowen Tan · Russ Salakhutdinov · Tom Mitchell · Eric Xing -
2019 Poster: Hyperbolic Graph Convolutional Neural Networks »
Ines Chami · Zhitao Ying · Christopher Ré · Jure Leskovec -
2019 Demonstration: AllenNLP Interpret: Explaining Predictions of NLP Models »
Jens Tuyls · Eric Wallace · Matt Gardner · Junlin Wang · Sameer Singh · Sanjay Subramanian -
2019 Poster: Game Design for Eliciting Distinguishable Behavior »
Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen -
2018 : Teaching through Dialogue and Games »
Jason E Weston -
2018 : Humans and models as embodied dialogue agents in text-based games »
Jason Weston -
2018 Workshop: Learning by Instruction »
Shashank Srivastava · Igor Labutov · Bishan Yang · Amos Azaria · Tom Mitchell -
2018 Workshop: Relational Representation Learning »
Aditya Grover · Paroma Varma · Frederic Sala · Christopher Ré · Jennifer Neville · Stefano Ermon · Steven Holtzen -
2018 : The Conversational Intelligence Challenge 2 (ConvAI2) : Setup, Opening Words »
Jason Weston -
2018 Poster: Semi-Supervised Learning with Declaratively Specified Entropy Constraints »
Haitian Sun · William Cohen · Lidong Bing -
2018 Poster: Compact Representation of Uncertainty in Clustering »
Craig Greenberg · Nicholas Monath · Ari Kobren · Patrick Flaherty · Andrew McGregor · Andrew McCallum -
2018 Poster: Learning Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics Problems »
Mrinmaya Sachan · Kumar Avinava Dubey · Tom Mitchell · Dan Roth · Eric Xing -
2018 Poster: GLoMo: Unsupervised Learning of Transferable Relational Graphs »
Zhilin Yang · Jake Zhao · Bhuwan Dhingra · Kaiming He · William Cohen · Russ Salakhutdinov · Yann LeCun -
2018 Poster: Learning Compressed Transforms with Low Displacement Rank »
Anna Thomas · Albert Gu · Tri Dao · Atri Rudra · Christopher Ré -
2017 : Invited Talk: "Light Supervision of Structured Prediction Energy Networks" »
Andrew McCallum -
2017 : Differentiable Learning of Logical Rules for Knowledge Base Reasoning »
William Cohen · Fan Yang -
2017 : Invited Talk: Learning from Limited Labeled Data (But a Lot of Unlabeled Data) »
Tom Mitchell -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré -
2017 : NELL: Lessons and Future Directions »
Tom Mitchell -
2017 : Reading and Reasoning with Neural Program Interpreters »
Sebastian Riedel -
2017 Workshop: ML Systems Workshop @ NIPS 2017 »
Aparna Lakshmiratan · Sarah Bird · Siddhartha Sen · Christopher Ré · Li Erran Li · Joseph Gonzalez · Daniel Crankshaw -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: Learning to Compose Domain-Specific Transformations for Data Augmentation »
Alexander Ratner · Henry Ehrenberg · Zeshan Hussain · Jared Dunnmon · Christopher Ré -
2017 Poster: End-to-End Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2017 Poster: Good Semi-supervised Learning That Requires a Bad GAN »
Zihang Dai · Zhilin Yang · Fan Yang · William Cohen · Ruslan Salakhutdinov -
2017 Oral: End-to-end Differentiable Proving »
Tim Rocktäschel · Sebastian Riedel -
2017 Poster: Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples »
Haw-Shiuan Chang · Erik Learned-Miller · Andrew McCallum -
2017 Poster: Gaussian Quadrature for Kernel Features »
Tri Dao · Christopher M De Sa · Christopher Ré -
2017 Spotlight: Gaussian Quadrature for Kernel Features »
Tri Dao · Christopher M De Sa · Christopher Ré -
2017 Poster: Inferring Generative Model Structure with Static Analysis »
Paroma Varma · Bryan He · Payal Bajaj · Nishith Khandwala · Imon Banerjee · Daniel Rubin · Christopher Ré -
2017 Poster: Differentiable Learning of Logical Rules for Knowledge Base Reasoning »
Fan Yang · Zhilin Yang · William Cohen -
2017 Poster: Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach »
Emmanouil Platanios · Hoifung Poon · Tom M Mitchell · Eric Horvitz -
2016 : Jason Weston »
Jason E Weston -
2016 : Invited Talk: You've been using asynchrony wrong your whole life! (Chris Re, Stanford) »
Christopher Ré -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel -
2016 Workshop: Let's Discuss: Learning Methods for Dialogue »
Hal Daumé III · Paul Mineiro · Amanda Stent · Jason E Weston -
2016 Poster: Dialog-based Language Learning »
Jason E Weston -
2016 Poster: Cyclades: Conflict-free Asynchronous Machine Learning »
Xinghao Pan · Maximilian Lam · Stephen Tu · Dimitris Papailiopoulos · Ce Zhang · Michael Jordan · Kannan Ramchandran · Christopher Ré · Benjamin Recht -
2016 Poster: Sub-sampled Newton Methods with Non-uniform Sampling »
Peng Xu · Jiyan Yang · Farbod Roosta-Khorasani · Christopher Ré · Michael Mahoney -
2016 Poster: Review Networks for Caption Generation »
Zhilin Yang · Ye Yuan · Yuexin Wu · William Cohen · Russ Salakhutdinov -
2015 Workshop: Machine Learning Systems »
Alex Beutel · Tianqi Chen · Sameer Singh · Elaine Angelino · Markus Weimer · Joseph Gonzalez -
2015 Workshop: Reasoning, Attention, Memory (RAM) Workshop »
Jason E Weston · Sumit Chopra · Antoine Bordes -
2015 : Discussion Panel with Afternoon Speakers (Day 1) »
Ramanathan Guha · Antoine Bordes · Gregory Wayne -
2015 : Motivation »
Ramanathan Guha -
2015 : Evaluating Prerequisite Qualities For End-to-End Dialog Systems »
Jason E Weston -
2015 Poster: Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care »
Sorathan Chaturapruek · John Duchi · Christopher Ré -
2015 Poster: End-To-End Memory Networks »
Sainbayar Sukhbaatar · arthur szlam · Jason Weston · Rob Fergus -
2015 Oral: End-To-End Memory Networks »
Sainbayar Sukhbaatar · arthur szlam · Jason Weston · Rob Fergus -
2015 Poster: Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré -
2015 Spotlight: Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré -
2015 Poster: Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms »
Christopher M De Sa · Ce Zhang · Kunle Olukotun · Christopher Ré · Christopher Ré -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Demonstration: A Visual and Interactive IDE for Probabilistic Programming »
Sameer Singh · Luke Hewitt · Tim Rocktäschel · Sebastian Riedel -
2014 Poster: Parallel Feature Selection Inspired by Group Testing »
Yingbo Zhou · Utkarsh Porwal · Ce Zhang · Hung Q Ngo · XuanLong Nguyen · Christopher Ré · Venu Govindaraju -
2014 Session: Tutorial Session A »
Kevin Murphy -
2014 Session: Tutorial Session A »
Kevin Murphy -
2014 Session: Tutorial Session A »
Kevin Murphy -
2013 Workshop: Big Learning : Advances in Algorithms and Data Management »
Xinghao Pan · Haijie Gu · Joseph Gonzalez · Sameer Singh · Yucheng Low · Joseph Hellerstein · Derek G Murray · Raghu Ramakrishnan · Michael Jordan · Christopher Ré -
2012 Workshop: Big Learning : Algorithms, Systems, and Tools »
Sameer Singh · John Duchi · Yucheng Low · Joseph E Gonzalez -
2012 Poster: Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression »
Mohammad Emtiyaz Khan · Shakir Mohamed · Kevin Murphy -
2012 Poster: MAP Inference in Chains using Column Generation »
David Belanger · Alexandre T Passos · Sebastian Riedel · Andrew McCallum -
2011 Workshop: Learning Semantics »
Antoine Bordes · Jason E Weston · Ronan Collobert · Leon Bottou -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Query-Aware MCMC »
Michael Wick · Andrew McCallum -
2010 Poster: Label Embedding Trees for Large Multi-Class Tasks »
Samy Bengio · Jason E Weston · David Grangier -
2010 Poster: Variational bounds for mixed-data factor analysis »
Mohammad Emtiyaz Khan · Benjamin Marlin · Guillaume Bouchard · Kevin Murphy -
2010 Poster: Efficient Relational Learning with Hidden Variable Detection »
Ni Lao · Jun Zhu · Liu Xinwang · Yandong Liu · William Cohen -
2009 Oral: Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models »
Baback Moghaddam · Benjamin Marlin · Mohammad Emtiyaz Khan · Kevin Murphy -
2009 Poster: FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs »
Andrew McCallum · Karl Schultz · Sameer Singh -
2009 Poster: Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models »
Baback Moghaddam · Benjamin Marlin · Mohammad Emtiyaz Khan · Kevin Murphy -
2009 Poster: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Spotlight: Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference »
Michael Wick · Khashayar Rohanimanesh · Sameer Singh · Andrew McCallum -
2009 Poster: Zero-shot Learning with Semantic Output Codes »
Mark M Palatucci · Dean Pomerleau · Geoffrey E Hinton · Tom Mitchell -
2009 Poster: Polynomial Semantic Indexing »
Bing Bai · Jason E Weston · David Grangier · Ronan Collobert · Kunihiko Sadamasa · Yanjun Qi · Corinna Cortes · Mehryar Mohri -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Tutorial: Deep Learning in Natural Language Processing »
Ronan Collobert · Jason E Weston -
2008 Workshop: Parallel Implementations of Learning Algorithms: What have you done for me lately? »
Robert Thibadeau · Dan Hammerstrom · David S Touretzky · Tom Mitchell -
2008 Workshop: Parallel Implementations of Learning Algorithms: What have you done for me lately? »
Robert Thibadeau · David S Touretzky · Dan Hammerstrom · Tom Mitchell -
2008 Poster: Analyzing the Monotonic Feature Abstraction for Text Classification »
Doug Downey · Oren Etzioni -
2008 Spotlight: Analyzing the Monotonic Feature Abstraction for Text Classification »
Doug Downey · Oren Etzioni -
2007 Workshop: Statistical Network Models »
Kevin Murphy · Lise Getoor · Eric Xing · Raphael Gottardo -
2006 Workshop: New directions on decoding mental states from fMRI data »
John-Dylan Haynes · Tom Mitchell · Francisco Pereira