Timezone: »
In this paper we explore how machine learning techniques can be applied to the discovery of efficient mathematical identities. We introduce an attribute grammar framework for representing symbolic expressions. Given a grammar of math operators, we build trees that combine them in different ways, looking for compositions that are analytically equivalent to a target expression but of lower computational complexity. However, as the space of trees grows exponentially with the complexity of the target expression, brute force search is impractical for all but the simplest of expressions. Consequently, we introduce two novel learning approaches that are able to learn from simpler expressions to guide the tree search. The first of these is a simple n-gram model, the other being a recursive neural-network. We show how these approaches enable us to derive complex identities, beyond reach of brute-force search, or human derivation.
Author Information
Wojciech Zaremba (OpenAI)
Karol Kurach (Google Brain)
Rob Fergus (DeepMind / NYU)
Rob Fergus is an Associate Professor of Computer Science at the Courant Institute of Mathematical Sciences, New York University. He received a Masters in Electrical Engineering with Prof. Pietro Perona at Caltech, before completing a PhD with Prof. Andrew Zisserman at the University of Oxford in 2005. Before coming to NYU, he spent two years as a post-doc in the Computer Science and Artificial Intelligence Lab (CSAIL) at MIT, working with Prof. William Freeman. He has received several awards including a CVPR best paper prize, a Sloan Fellowship & NSF Career award and the IEEE Longuet-Higgins prize.
Related Events (a corresponding poster, oral, or spotlight)
-
2014 Poster: Learning to Discover Efficient Mathematical Identities »
Wed. Dec 10th 12:00 -- 04:59 AM Room Level 2, room 210D
More from the Same Authors
-
2021 : Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning »
Denis Yarats · Rob Fergus · Alessandro Lazaric · Lerrel Pinto -
2022 : Collaborating with language models for embodied reasoning »
Ishita Dasgupta · Christine Kaeser-Chen · Kenneth Marino · Arun Ahuja · Sheila Babayan · Felix Hill · Rob Fergus -
2022 : Collaborating with language models for embodied reasoning »
Ishita Dasgupta · Christine Kaeser-Chen · Kenneth Marino · Arun Ahuja · Sheila Babayan · Felix Hill · Rob Fergus -
2023 Poster: NetHack is Hard to Hack »
Ulyana Piterbarg · Lerrel Pinto · Rob Fergus -
2022 Poster: Learning to Navigate Wikipedia by Taking Random Walks »
Manzil Zaheer · Kenneth Marino · Will Grathwohl · John Schultz · Wendy Shang · Sheila Babayan · Arun Ahuja · Ishita Dasgupta · Christine Kaeser-Chen · Rob Fergus -
2021 Poster: Automatic Data Augmentation for Generalization in Reinforcement Learning »
Roberta Raileanu · Maxwell Goldstein · Denis Yarats · Ilya Kostrikov · Rob Fergus -
2020 : Contributed Talk - Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences »
Alexander Rives · Siddharth Goyal · Joshua Meier · Zeming Lin · Demi Guo · Myle Ott · Larry Zitnick · Rob Fergus -
2016 Poster: Learning Multiagent Communication with Backpropagation »
Sainbayar Sukhbaatar · arthur szlam · Rob Fergus -
2016 Poster: Improved Techniques for Training GANs »
Tim Salimans · Ian Goodfellow · Wojciech Zaremba · Vicki Cheung · Alec Radford · Peter Chen · Xi Chen -
2014 Poster: Depth Map Prediction from a Single Image using a Multi-Scale Deep Network »
David Eigen · Christian Puhrsch · Rob Fergus -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus -
2014 Spotlight: Depth Map Prediction from a Single Image using a Multi-Scale Deep Network »
David Eigen · Christian Puhrsch · Rob Fergus -
2013 Poster: B-test: A Non-parametric, Low Variance Kernel Two-sample Test »
Wojciech Zaremba · Arthur Gretton · Matthew B Blaschko -
2013 Tutorial: Deep Learning for Computer Vision »
Rob Fergus -
2011 Workshop: Machine Learning meets Computational Photography »
Michael Hirsch · Stefan Harmeling · Rob Fergus · Peyman Milanfar -
2011 Poster: Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines »
Matthew D Zeiler · Graham Taylor · Leonid Sigal · Iain Matthews · Rob Fergus -
2011 Session: Spotlight Session 1 »
Rob Fergus -
2010 Session: Oral Session 17 »
Rob Fergus -
2010 Poster: Pose-Sensitive Embedding by Nonlinear NCA Regression »
Graham Taylor · Rob Fergus · George Williams · Ian Spiro · Christoph Bregler -
2009 Poster: Fast Image Deconvolution using Hyper-Laplacian Priors »
Dilip Krishnan · Rob Fergus -
2009 Spotlight: Fast Image Deconvolution using Hyper-Laplacian Priors »
Dilip Krishnan · Rob Fergus -
2009 Poster: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2009 Oral: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2008 Poster: Spectral Hashing »
Yair Weiss · Antonio Torralba · Rob Fergus -
2007 Spotlight: Object Recognition by Scene Alignment »
Bryan C Russell · Antonio Torralba · Ce Liu · Rob Fergus · William Freeman -
2007 Poster: Object Recognition by Scene Alignment »
Bryan C Russell · Antonio Torralba · Ce Liu · Rob Fergus · William Freeman