Timezone: »
Applying convolutional neural networks to large images is computationally expensive because the amount of computation scales linearly with the number of image pixels. We present a novel recurrent neural network model that is capable of extracting information from an image or video by adaptively selecting a sequence of regions or locations and only processing the selected regions at high resolution. Like convolutional neural networks, the proposed model has a degree of translation invariance built-in, but the amount of computation it performs can be controlled independently of the input image size. While the model is non-differentiable, it can be trained using reinforcement learning methods to learn task-specific policies. We evaluate our model on several image classification tasks, where it significantly outperforms a convolutional neural network baseline on cluttered images, and on a dynamic visual control problem, where it learns to track a simple object without an explicit training signal for doing so.
Author Information
Volodymyr Mnih (DeepMind)
Nicolas Heess (Google DeepMind)
Alex Graves (Google DeepMind)
Main contributions to neural networks include the Connectionist Temporal Classification training algorithm (widely used for speech, handwriting and gesture recognition, e.g. by Google voice search), a type of differentiable attention for RNNs (originally for handwriting generation, now a standard tool in computer vision, machine translation and elsewhere), stochastic gradient variational inference, and Neural Turing Machines. He works at Google Deep Mind.
koray kavukcuoglu (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2014 Poster: Recurrent Models of Visual Attention »
Thu. Dec 11th 07:00 -- 11:00 PM Room Level 2, room 210D
More from the Same Authors
-
2021 : Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration »
Oliver Groth · Markus Wulfmeier · Giulia Vezzani · Vibhavari Dasagi · Tim Hertweck · Roland Hafner · Nicolas Heess · Martin Riedmiller -
2021 : Learning Transferable Motor Skills with Hierarchical Latent Mixture Policies »
Dushyant Rao · Fereshteh Sadeghi · Leonard Hasenclever · Markus Wulfmeier · Martina Zambelli · Giulia Vezzani · Dhruva Tirumala · Yusuf Aytar · Josh Merel · Nicolas Heess · Raia Hadsell -
2021 : Wasserstein Distance Maximizing Intrinsic Control »
Ishan Durugkar · Steven Hansen · Stephen Spencer · Volodymyr Mnih · Ishan Durugkar -
2021 : Offline Meta-Reinforcement Learning for Industrial Insertion »
Tony Zhao · Jianlan Luo · Oleg Sushkov · Rugile Pevceviciute · Nicolas Heess · Jonathan Scholz · Stefan Schaal · Sergey Levine -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2022 : In-context Reinforcement Learning with Algorithm Distillation »
Michael Laskin · Luyu Wang · Junhyuk Oh · Emilio Parisotto · Stephen Spencer · Richie Steigerwald · DJ Strouse · Steven Hansen · Angelos Filos · Ethan Brooks · Maxime Gazeau · Himanshu Sahni · Satinder Singh · Volodymyr Mnih -
2022 Poster: Palm up: Playing in the Latent Manifold for Unsupervised Pretraining »
Hao Liu · Tom Zahavy · Volodymyr Mnih · Satinder Singh -
2022 Poster: Data augmentation for efficient learning from parametric experts »
Alexandre Galashov · Josh Merel · Nicolas Heess -
2021 Poster: Entropic Desired Dynamics for Intrinsic Control »
Steven Hansen · Guillaume Desjardins · Kate Baumli · David Warde-Farley · Nicolas Heess · Simon Osindero · Volodymyr Mnih -
2021 Poster: Neural Production Systems »
Anirudh Goyal · Aniket Didolkar · Nan Rosemary Ke · Charles Blundell · Philippe Beaudoin · Nicolas Heess · Michael Mozer · Yoshua Bengio -
2020 Poster: Value-driven Hindsight Modelling »
Arthur Guez · Fabio Viola · Theophane Weber · Lars Buesing · Steven Kapturowski · Doina Precup · David Silver · Nicolas Heess -
2020 Poster: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: Critic Regularized Regression »
Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas -
2020 Oral: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning »
Jean-Bastien Grill · Florian Strub · Florent Altché · Corentin Tallec · Pierre Richemond · Elena Buchatskaya · Carl Doersch · Bernardo Avila Pires · Daniel (Zhaohan) Guo · Mohammad Gheshlaghi Azar · Bilal Piot · koray kavukcuoglu · Remi Munos · Michal Valko -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2020 Poster: Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces »
Guy Lorberbom · Chris Maddison · Nicolas Heess · Tamir Hazan · Danny Tarlow -
2019 Poster: Unsupervised Learning of Object Keypoints for Perception and Control »
Tejas Kulkarni · Ankush Gupta · Catalin Ionescu · Sebastian Borgeaud · Malcolm Reynolds · Andrew Zisserman · Volodymyr Mnih -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : Probabilistic Reasoning for Reinforcement Learning (Nicolas Heess) »
Nicolas Heess -
2018 Poster: Learning to Navigate in Cities Without a Map »
Piotr Mirowski · Matt Grimes · Mateusz Malinowski · Karl Moritz Hermann · Keith Anderson · Denis Teplyashin · Karen Simonyan · koray kavukcuoglu · Andrew Zisserman · Raia Hadsell -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Neural Discrete Representation Learning »
Aaron van den Oord · Oriol Vinyals · koray kavukcuoglu -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2017 Poster: Learning Hierarchical Information Flow with Recurrent Neural Modules »
Danijar Hafner · Alexander Irpan · James Davidson · Nicolas Heess -
2016 Symposium: Recurrent Neural Networks and Other Machines that Learn Algorithms »
Jürgen Schmidhuber · Sepp Hochreiter · Alex Graves · Rupesh K Srivastava -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes »
Jack Rae · Jonathan J Hunt · Ivo Danihelka · Tim Harley · Andrew Senior · Gregory Wayne · Alex Graves · Timothy Lillicrap -
2016 Poster: Conditional Image Generation with PixelCNN Decoders »
Aaron van den Oord · Nal Kalchbrenner · Lasse Espeholt · koray kavukcuoglu · Oriol Vinyals · Alex Graves -
2016 Poster: Attend, Infer, Repeat: Fast Scene Understanding with Generative Models »
S. M. Ali Eslami · Nicolas Heess · Theophane Weber · Yuval Tassa · David Szepesvari · koray kavukcuoglu · Geoffrey E Hinton -
2016 Poster: Learning values across many orders of magnitude »
Hado van Hasselt · Arthur Guez · Arthur Guez · Matteo Hessel · Volodymyr Mnih · David Silver -
2016 Poster: Memory-Efficient Backpropagation Through Time »
Audrunas Gruslys · Remi Munos · Ivo Danihelka · Marc Lanctot · Alex Graves -
2016 Poster: Using Fast Weights to Attend to the Recent Past »
Jimmy Ba · Geoffrey E Hinton · Volodymyr Mnih · Joel Leibo · Catalin Ionescu -
2016 Oral: Using Fast Weights to Attend to the Recent Past »
Jimmy Ba · Geoffrey E Hinton · Volodymyr Mnih · Joel Leibo · Catalin Ionescu -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu -
2016 Poster: Strategic Attentive Writer for Learning Macro-Actions »
Alexander (Sasha) Vezhnevets · Volodymyr Mnih · Simon Osindero · Alex Graves · Oriol Vinyals · John Agapiou · koray kavukcuoglu -
2016 Poster: Matching Networks for One Shot Learning »
Oriol Vinyals · Charles Blundell · Timothy Lillicrap · koray kavukcuoglu · Daan Wierstra -
2015 : The Deep Reinforcement Learning Boom »
Volodymyr Mnih -
2015 Poster: Natural Neural Networks »
Guillaume Desjardins · Karen Simonyan · Razvan Pascanu · koray kavukcuoglu -
2015 Poster: Gradient Estimation Using Stochastic Computation Graphs »
John Schulman · Nicolas Heess · Theophane Weber · Pieter Abbeel -
2015 Poster: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu -
2015 Spotlight: Spatial Transformer Networks »
Max Jaderberg · Karen Simonyan · Andrew Zisserman · koray kavukcuoglu -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2012 Poster: Learning the Dependency Structure of Latent Factors »
Yunlong He · Yanjun Qi · koray kavukcuoglu · Haesun Park -
2011 Poster: Practical Variational Inference for Neural Networks »
Alex Graves -
2011 Spotlight: Practical Variational Inference for Neural Networks »
Alex Graves -
2010 Poster: Generating more realistic images using gated MRF's »
Marc'Aurelio Ranzato · Volodymyr Mnih · Geoffrey E Hinton -
2010 Spotlight: Learning Convolutional Feature Hierarchies for Visual Recognition »
koray kavukcuoglu · Pierre Sermanet · Y-Lan Boureau · Karol Gregor · Michael Mathieu · Yann LeCun -
2010 Poster: Learning Convolutional Feature Hierarchies for Visual Recognition »
koray kavukcuoglu · Pierre Sermanet · Y-Lan Boureau · Karol Gregor · Michael Mathieu · Yann LeCun -
2008 Poster: Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks »
Alex Graves · Jürgen Schmidhuber -
2008 Spotlight: Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks »
Alex Graves · Jürgen Schmidhuber -
2007 Poster: Unconstrained On-line Handwriting Recognition with Recurrent Neural Networks »
Alex Graves · Santiago Fernandez · Marcus Liwicki · Horst Bunke · Jürgen Schmidhuber