Timezone: »
The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and develop new models that allow for effective generalisation from small labelled data sets to large unlabelled ones. Generative approaches have thus far been either inflexible, inefficient or non-scalable. We show that deep generative models and approximate Bayesian inference exploiting recent advances in variational methods can be used to provide significant improvements, making generative approaches highly competitive for semi-supervised learning.
Author Information
Diederik Kingma (Google)
Shakir Mohamed (DeepMind)

Shakir Mohamed is a senior staff scientist at DeepMind in London. Shakir's main interests lie at the intersection of approximate Bayesian inference, deep learning and reinforcement learning, and the role that machine learning systems at this intersection have in the development of more intelligent and general-purpose learning systems. Before moving to London, Shakir held a Junior Research Fellowship from the Canadian Institute for Advanced Research (CIFAR), based in Vancouver at the University of British Columbia with Nando de Freitas. Shakir completed his PhD with Zoubin Ghahramani at the University of Cambridge, where he was a Commonwealth Scholar to the United Kingdom. Shakir is from South Africa and completed his previous degrees in Electrical and Information Engineering at the University of the Witwatersrand, Johannesburg.
Danilo Jimenez Rezende (Google DeepMind)
Max Welling (Microsoft Research AI4Science / University of Amsterdam)
Related Events (a corresponding poster, oral, or spotlight)
-
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Wed. Dec 10th 12:00 -- 04:59 AM Room Level 2, room 210D
More from the Same Authors
-
2021 : Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning »
Nan Rosemary Ke · Aniket Didolkar · Sarthak Mittal · Anirudh Goyal · Guillaume Lajoie · Stefan Bauer · Danilo Jimenez Rezende · Yoshua Bengio · Chris Pal · Michael Mozer -
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2022 : PIPS: Path Integral Stochastic Optimal Control for Path Sampling in Molecular Dynamics »
Lars Holdijk · Yuanqi Du · Ferry Hooft · Priyank Jaini · Berend Ensing · Max Welling -
2022 : Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design »
Ilia Igashov · Hannes Stärk · Clément Vignac · Victor Garcia Satorras · Pascal Frossard · Max Welling · Michael Bronstein · Bruno Correia -
2022 : Program Synthesis for Integer Sequence Generation »
Natasha Butt · Auke Wiggers · Taco Cohen · Max Welling -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : On Distillation of Guided Diffusion Models »
Chenlin Meng · Ruiqi Gao · Diederik Kingma · Stefano Ermon · Jonathan Ho · Tim Salimans -
2022 : Advancing the participatory approach to AI in Mental Health »
Wilson Lee · Munmun De Choudhury · Morgan Scheuerman · Julia Hamer-Hunt · Dan Joyce · Nenad Tomasev · Kevin McKee · Shakir Mohamed · Danielle Belgrave · Christopher Burr -
2022 Spotlight: Alleviating Adversarial Attacks on Variational Autoencoders with MCMC »
Anna Kuzina · Max Welling · Jakub Tomczak -
2022 : Invited Speaker »
Max Welling -
2022 : Invited Talk #4, The Fifth Paradigm of Scientific Discovery, Max Welling »
Max Welling -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Batch Bayesian Optimization on Permutations using the Acquisition Weighted Kernel »
Changyong Oh · Roberto Bondesan · Efstratios Gavves · Max Welling -
2022 Poster: Alleviating Adversarial Attacks on Variational Autoencoders with MCMC »
Anna Kuzina · Max Welling · Jakub Tomczak -
2022 Poster: On the symmetries of the synchronization problem in Cryo-EM: Multi-Frequency Vector Diffusion Maps on the Projective Plane »
Gabriele Cesa · Arash Behboodi · Taco Cohen · Max Welling -
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2021 : General Discussion 1 - What is out of distribution (OOD) generalization and why is it important? with Yoshua Bengio, Leyla Isik, Max Welling »
Yoshua Bengio · Leyla Isik · Max Welling · Joshua T Vogelstein · Weiwei Yang -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 : Live Panel »
Max Welling · Bharath Ramsundar · Irina Rish · Karianne J Bergen · Pushmeet Kohli -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 : Session 1 | Invited talk: Max Welling, "Accelerating simulations of nature, both classical and quantum, with equivariant deep learning" »
Max Welling · Atilim Gunes Baydin -
2021 : Implicit Riemannian Concave Potential Maps »
Danilo Jimenez Rezende · Sébastien Racanière -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions »
Emiel Hoogeboom · Didrik Nielsen · Priyank Jaini · Patrick Forré · Max Welling -
2021 Poster: Topographic VAEs learn Equivariant Capsules »
T. Anderson Keller · Max Welling -
2021 : Unsupervised Indoor Wi-Fi Positioning »
Farhad G. Zanjani · Ilia Karmanov · Hanno Ackermann · Daniel Dijkman · Max Welling · Ishaque Kadampot · Simone Merlin · Steve Shellhammer · Rui Liang · Brian Buesker · Harshit Joshi · Vamsi Vegunta · Raamkumar Balamurthi · Bibhu Mohanty · Joseph Soriaga · Ron Tindall · Pat Lawlor -
2021 Poster: Learning Equivariant Energy Based Models with Equivariant Stein Variational Gradient Descent »
Priyank Jaini · Lars Holdijk · Max Welling -
2021 Poster: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2021 Poster: Modality-Agnostic Topology Aware Localization »
Farhad Ghazvinian Zanjani · Ilia Karmanov · Hanno Ackermann · Daniel Dijkman · Simone Merlin · Max Welling · Fatih Porikli -
2021 Poster: Variational Diffusion Models »
Diederik Kingma · Tim Salimans · Ben Poole · Jonathan Ho -
2021 Oral: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 : Invited talk 1 QnA: Shakir Mohamed »
Shakir Mohamed · Feryal Behbahani · Raymond Chua -
2020 : Invited Talk: Max Welling - The LIAR (Learning with Interval Arithmetic Regularization) is Dead »
Max Welling -
2020 : Invited Talk #1 Shakir Mohamed : Pain and Machine Learning »
Shakir Mohamed -
2020 : Q&A with Shakir »
Shakir Mohamed -
2020 : Invited: Shakir Mohamed »
Shakir Mohamed -
2020 Poster: Natural Graph Networks »
Pim de Haan · Taco Cohen · Max Welling -
2020 Poster: SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks »
Fabian Fuchs · Daniel E Worrall · Volker Fischer · Max Welling -
2020 Poster: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Oral: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Poster: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 Poster: The Convolution Exponential and Generalized Sylvester Flows »
Emiel Hoogeboom · Victor Garcia Satorras · Jakub Tomczak · Max Welling -
2020 Poster: Bayesian Bits: Unifying Quantization and Pruning »
Mart van Baalen · Christos Louizos · Markus Nagel · Rana Ali Amjad · Ying Wang · Tijmen Blankevoort · Max Welling -
2020 Poster: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Spotlight: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Spotlight: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2020 Poster: MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning »
Elise van der Pol · Daniel E Worrall · Herke van Hoof · Frans Oliehoek · Max Welling -
2020 Affinity Workshop: Muslims in ML »
Marzyeh Ghassemi · Mohammad Norouzi · Shakir Mohamed · Aya Salama · Tasmie Sarker -
2019 : Equivariant Hamiltonian Flows »
Danilo Jimenez Rezende -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Danilo Rezende »
Danilo Jimenez Rezende -
2019 : TBD »
Max Welling -
2019 : Keynote - ML »
Max Welling -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: Invert to Learn to Invert »
Patrick Putzky · Max Welling -
2019 Poster: Training Language GANs from Scratch »
Cyprien de Masson d'Autume · Shakir Mohamed · Mihaela Rosca · Jack Rae -
2019 Poster: Deep Scale-spaces: Equivariance Over Scale »
Daniel Worrall · Max Welling -
2019 Poster: Towards Interpretable Reinforcement Learning Using Attention Augmented Agents »
Alexander Mott · Daniel Zoran · Mike Chrzanowski · Daan Wierstra · Danilo Jimenez Rezende -
2019 Poster: Shaping Belief States with Generative Environment Models for RL »
Karol Gregor · Danilo Jimenez Rezende · Frederic Besse · Yan Wu · Hamza Merzic · Aaron van den Oord -
2019 Poster: Integer Discrete Flows and Lossless Compression »
Emiel Hoogeboom · Jorn Peters · Rianne van den Berg · Max Welling -
2019 Poster: The Functional Neural Process »
Christos Louizos · Xiahan Shi · Klamer Schutte · Max Welling -
2019 Poster: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Zeynep Akata · Max Welling -
2019 Spotlight: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Max Welling · Zeynep Akata -
2019 Poster: Combinatorial Bayesian Optimization using the Graph Cartesian Product »
Changyong Oh · Jakub Tomczak · Stratis Gavves · Max Welling -
2018 : Making the Case for using more Inductive Bias in Deep Learning »
Max Welling -
2018 : Panel disucssion »
Max Welling · Tim Genewein · Edwin Park · Song Han -
2018 : Efficient Computation of Deep Convolutional Neural Networks: A Quantization Perspective »
Max Welling -
2018 : Prof. Max Welling »
Max Welling -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Workshop: NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications »
Lixin Fan · Zhouchen Lin · Max Welling · Yurong Chen · Werner Bailer -
2018 Poster: Implicit Reparameterization Gradients »
Mikhail Figurnov · Shakir Mohamed · Andriy Mnih -
2018 Spotlight: Implicit Reparameterization Gradients »
Mikhail Figurnov · Shakir Mohamed · Andriy Mnih -
2018 Poster: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Spotlight: A Probabilistic U-Net for Segmentation of Ambiguous Images »
Simon Kohl · Bernardino Romera-Paredes · Clemens Meyer · Jeffrey De Fauw · Joseph R. Ledsam · Klaus Maier-Hein · S. M. Ali Eslami · Danilo Jimenez Rezende · Olaf Ronneberger -
2018 Poster: Graphical Generative Adversarial Networks »
Chongxuan LI · Max Welling · Jun Zhu · Bo Zhang -
2018 Poster: Glow: Generative Flow with Invertible 1x1 Convolutions »
Diederik Kingma · Prafulla Dhariwal -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Deep Bayes for Distributed Learning, Uncertainty Quantification and Compression »
Max Welling -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 : Invited talk 1: Deep recurrent inverse modeling for radio astronomy and fast MRI imaging »
Max Welling -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Variational Memory Addressing in Generative Models »
Jörg Bornschein · Andriy Mnih · Daniel Zoran · Danilo Jimenez Rezende -
2017 Poster: Bayesian Compression for Deep Learning »
Christos Louizos · Karen Ullrich · Max Welling -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 : Bayesian Agents: Bayesian Reasoning and Deep Learning in Agent-based Systems »
Shakir Mohamed -
2016 : Max Welling : Making Deep Learning Efficient Through Sparsification »
Max Welling -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Oral: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Poster: Towards Conceptual Compression »
Karol Gregor · Frederic Besse · Danilo Jimenez Rezende · Ivo Danihelka · Daan Wierstra -
2016 Poster: Interaction Networks for Learning about Objects, Relations and Physics »
Peter Battaglia · Razvan Pascanu · Matthew Lai · Danilo Jimenez Rezende · koray kavukcuoglu -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2016 Tutorial: Variational Inference: Foundations and Modern Methods »
David Blei · Shakir Mohamed · Rajesh Ranganath -
2015 : Variational Auto-Encoders and Extensions »
Diederik Kingma -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 : *Max Welling* Optimization Monte Carlo »
Max Welling -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Bayesian dark knowledge »
Anoop Korattikara Balan · Vivek Rathod · Kevin Murphy · Max Welling -
2015 Poster: Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference »
Ted Meeds · Max Welling -
2015 Poster: Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning »
Shakir Mohamed · Danilo Jimenez Rezende -
2015 Poster: Variational Dropout and the Local Reparameterization Trick »
Diederik Kingma · Tim Salimans · Max Welling -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2014 Demonstration: Machine Learning in the Browser »
Ted Meeds · Remco Hendriks · Said Al Faraby · Magiel Bruntink · Max Welling -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2012 Workshop: Bayesian Optimization and Decision Making »
Javad Azimi · Roman Garnett · Frank R Hutter · Shakir Mohamed -
2012 Poster: Expectation Propagation in Gaussian Process Dynamical Systems »
Marc Deisenroth · Shakir Mohamed -
2012 Poster: Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression »
Mohammad Emtiyaz Khan · Shakir Mohamed · Kevin Murphy -
2012 Poster: The Time-Marginalized Coalescent Prior for Hierarchical Clustering »
Levi Boyles · Max Welling -
2011 Poster: Statistical Tests for Optimization Efficiency »
Levi Boyles · Anoop Korattikara · Deva Ramanan · Max Welling -
2010 Poster: On Herding and the Perceptron Cycling Theorem »
Andrew E Gelfand · Yutian Chen · Laurens van der Maaten · Max Welling -
2010 Poster: Regularized estimation of image statistics by Score Matching »
Diederik Kingma · Yann LeCun -
2009 Poster: Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process »
Shakir Mohamed · David A Knowles · Zoubin Ghahramani · Finale P Doshi-Velez -
2008 Session: Oral session 10: Nonparametric Processes, Scene Processing and Image Statistics »
Max Welling -
2008 Poster: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Poster: Asynchronous Distributed Learning of Topic Models »
Arthur Asuncion · Padhraic Smyth · Max Welling -
2008 Spotlight: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Spotlight: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Poster: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2006 Poster: Structure Learning in Markov Random Fields »
Sridevi Parise · Max Welling -
2006 Poster: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Spotlight: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling