Timezone: »

 
Poster
Tree-structured Gaussian Process Approximations
Thang Bui · Richard Turner

Wed Dec 10 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None

Gaussian process regression can be accelerated by constructing a small pseudo-dataset to summarise the observed data. This idea sits at the heart of many approximation schemes, but such an approach requires the number of pseudo-datapoints to be scaled with the range of the input space if the accuracy of the approximation is to be maintained. This presents problems in time-series settings or in spatial datasets where large numbers of pseudo-datapoints are required since computation typically scales quadratically with the pseudo-dataset size. In this paper we devise an approximation whose complexity grows linearly with the number of pseudo-datapoints. This is achieved by imposing a tree or chain structure on the pseudo-datapoints and calibrating the approximation using a Kullback-Leibler (KL) minimisation. Inference and learning can then be performed efficiently using the Gaussian belief propagation algorithm. We demonstrate the validity of our approach on a set of challenging regression tasks including missing data imputation for audio and spatial datasets. We trace out the speed-accuracy trade-off for the new method and show that the frontier dominates those obtained from a large number of existing approximation techniques.

Author Information

Thang Bui (University of Sydney)
Richard Turner (University of Cambridge)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors