Timezone: »
Stochastic variational inference (SVI) uses stochastic optimization to scale up Bayesian computation to massive data. We present an alternative perspective on SVI as approximate parallel coordinate ascent. SVI trades-off bias and variance to step close to the unknown true coordinate optimum given by batch variational Bayes (VB). We define a model to automate this process. The model infers the location of the next VB optimum from a sequence of noisy realizations. As a consequence of this construction, we update the variational parameters using Bayes rule, rather than a hand-crafted optimization schedule. When our model is a Kalman filter this procedure can recover the original SVI algorithm and SVI with adaptive steps. We may also encode additional assumptions in the model, such as heavy-tailed noise. By doing so, our algorithm outperforms the original SVI schedule and a state-of-the-art adaptive SVI algorithm in two diverse domains.
Author Information
Neil Houlsby (Cambridge)
David Blei (Columbia University)
More from the Same Authors
-
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Poster: Smoothed Gradients for Stochastic Variational Inference »
Stephan Mandt · David Blei -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero-Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: Efficient Online Inference for Bayesian Nonparametric Relational Models »
Dae Il Kim · Prem Gopalan · David Blei · Erik Sudderth -
2013 Poster: Modeling Overlapping Communities with Node Popularities »
Prem Gopalan · Chong Wang · David Blei -
2012 Poster: Collaborative Gaussian Processes for Preference Learning »
Neil Houlsby · José Miguel Hernández-Lobato · Ferenc Huszar · Zoubin Ghahramani -
2012 Poster: Truncation-free Online Variational Inference for Bayesian Nonparametric Models »
Chong Wang · David Blei -
2012 Poster: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Spotlight: Scalable Inference of Overlapping Communities »
Prem Gopalan · David Mimno · Sean Gerrish · Michael Freedman · David Blei -
2012 Poster: How They Vote: Issue-Adjusted Models of Legislative Behavior »
Sean Gerrish · David Blei -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei -
2010 Session: Oral Session 18 »
David Blei -
2010 Spotlight: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Online Learning for Latent Dirichlet Allocation »
Matthew D. Hoffman · David Blei · Francis Bach -
2010 Poster: Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable »
Lauren A Hannah · Warren B Powell · David Blei -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Oral: Reading Tea Leaves: How Humans Interpret Topic Models »
Jonathan Chang · Jordan Boyd-Graber · Sean Gerrish · Chong Wang · David Blei -
2009 Poster: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Spotlight: Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process »
Chong Wang · David Blei -
2009 Poster: Variational Inference for the Nested Chinese Restaurant Process »
Chong Wang · David Blei -
2009 Poster: A Bayesian Analysis of Dynamics in Free Recall »
Richard Socher · Samuel J Gershman · Adler Perotte · Per Sederberg · David Blei · Kenneth Norman -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Poster: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2008 Spotlight: Syntactic Topic Models »
Jordan Boyd-Graber · David Blei -
2008 Spotlight: Relative Performance Guarantees for Approximate Inference in Latent Dirichlet Allocation »
Indraneel Mukherjee · David Blei -
2007 Poster: Supervised Topic Models »
David Blei · Jon McAuliffe