Timezone: »

 
Poster
Active Regression by Stratification
Sivan Sabato · Remi Munos

Wed Dec 10 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None

We propose a new active learning algorithm for parametric linear regression with random design. We provide finite sample convergence guarantees for general distributions in the misspecified model. This is the first active learner for this setting that provably can improve over passive learning. Unlike other learning settings (such as classification), in regression the passive learning rate of O(1/epsilon) cannot in general be improved upon. Nonetheless, the so-called `constant' in the rate of convergence, which is characterized by a distribution-dependent risk, can be improved in many cases. For a given distribution, achieving the optimal risk requires prior knowledge of the distribution. Following the stratification technique advocated in Monte-Carlo function integration, our active learner approaches a the optimal risk using piecewise constant approximations.

Author Information

Sivan Sabato (Ben Gurion University)
Remi Munos (Google DeepMind)

More from the Same Authors