Timezone: »
Selecting the right algorithm is an important problem in computer science, because the algorithm often has to exploit the structure of the input to be efficient. The human mind faces the same challenge. Therefore, solutions to the algorithm selection problem can inspire models of human strategy selection and vice versa. Here, we view the algorithm selection problem as a special case of metareasoning and derive a solution that outperforms existing methods in sorting algorithm selection. We apply our theory to model how people choose between cognitive strategies and test its prediction in a behavioral experiment. We find that people quickly learn to adaptively choose between cognitive strategies. People's choices in our experiment are consistent with our model but inconsistent with previous theories of human strategy selection. Rational metareasoning appears to be a promising framework for reverse-engineering how people choose among cognitive strategies and translating the results into better solutions to the algorithm selection problem.
Author Information
Falk Lieder (UC Berkeley)
Dillon Plunkett (UC Berkeley)
Jessica B Hamrick (University of California, Berkeley)
Stuart J Russell (UC Berkeley)
Nicholas Hay (UC Berkeley)
Tom Griffiths (Princeton)
More from the Same Authors
-
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart J Russell -
2021 : V&S | Panel discussion »
Michael Dennis · Stuart J Russell · Mireille Hildebrandt · Salome Viljoen · Natasha Jaques -
2021 : V&S | RL Fictions »
Stuart J Russell -
2021 Workshop: Political Economy of Reinforcement Learning Systems (PERLS) »
Thomas Gilbert · Stuart J Russell · Tom O Zick · Aaron Snoswell · Michael Dennis -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2018 Poster: Negotiable Reinforcement Learning for Pareto Optimal Sequential Decision-Making »
Nishant Desai · Andrew Critch · Stuart J Russell -
2017 : Learning to select computations »
Falk Lieder · Fred Callaway · Sayan Gul · Paul Krueger -
2017 : Revealing human inductive biases and metacognitive processes with rational models »
Tom Griffiths -
2017 Poster: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Oral: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Poster: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2017 Oral: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2016 : Imagination-Based Decision Making with Physical Models in Deep Neural Networks »
Jessica B Hamrick -
2016 : Bounded Optimality and Rational Metareasoning in Human Cognition »
Tom Griffiths -
2016 Poster: Cooperative Inverse Reinforcement Learning »
Dylan Hadfield-Menell · Stuart J Russell · Pieter Abbeel · Anca Dragan -
2015 Workshop: Bounded Optimality and Rational Metareasoning »
Samuel J Gershman · Falk Lieder · Tom Griffiths · Noah Goodman -
2015 Poster: Gaussian Process Random Fields »
Dave Moore · Stuart J Russell -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2013 Poster: Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies »
Yangqing Jia · Joshua T Abbott · Joseph L Austerweil · Tom Griffiths · Trevor Darrell -
2013 Poster: Multilinear Dynamical Systems for Tensor Time Series »
Mark Rogers · Lei Li · Stuart J Russell -
2012 Poster: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Spotlight: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Poster: Burn-in, bias, and the rationality of anchoring »
Falk Lieder · Tom Griffiths · Noah Goodman -
2011 Poster: A rational model of causal inference with continuous causes »
M Pacer · Tom Griffiths -
2011 Poster: An ideal observer model for identifying the reference frame of objects »
Joseph L Austerweil · Abram Friesen · Tom Griffiths -
2011 Poster: Testing a Bayesian Measure of Representativeness Using a Large Image Database »
Joshua T Abbott · Katherine Heller · Zoubin Ghahramani · Tom Griffiths -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Spotlight: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2010 Poster: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2010 Poster: Global seismic monitoring as probabilistic inference »
Nimar Arora · Stuart J Russell · Paul Kidwell · Erik Sudderth -
2009 Workshop: Bounded-rational analyses of human cognition: Bayesian models, approximate inference, and the brain »
Noah Goodman · Edward Vul · Tom Griffiths · Josh Tenenbaum -
2009 Poster: Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling »
Lei ShiUpdateMe · Tom Griffiths -
2009 Spotlight: Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling »
Lei ShiUpdateMe · Tom Griffiths -
2009 Poster: Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning »
Anne Hsu · Tom Griffiths -
2009 Oral: Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning »
Anne Hsu · Tom Griffiths -
2009 Poster: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2009 Spotlight: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2008 Workshop: Machine learning meets human learning »
Nathaniel D Daw · Tom Griffiths · Josh Tenenbaum · Jerry Zhu -
2008 Poster: Modeling the effects of memory on human online sentence processing with particle filters »
Roger Levy · Florencia Reali · Tom Griffiths -
2008 Oral: Modeling the effects of memory on human online sentence processing with particle filters »
Roger Levy · Florencia Reali · Tom Griffiths -
2008 Poster: How memory biases affect information transmission: A rational analysis of serial reproduction »
Jing Xu · Tom Griffiths -
2008 Poster: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Poster: A rational model of preference learning and choice prediction by children »
Chris Lucas · Tom Griffiths · Fei Xu · Christine Fawcett -
2008 Poster: Probabilistic detection of short events, with application to critical care monitoring »
Norm Aleks · Stuart J Russell · Michael G Madden · Diane Morabito · Geoffrey T Manley · Kristan Staudenmayer · Mitchell Cohen -
2008 Spotlight: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Spotlight: A rational model of preference learning and choice prediction by children »
Chris Lucas · Tom Griffiths · Fei Xu · Christine Fawcett -
2008 Spotlight: How memory biases affect information transmission: A rational analysis of serial reproduction »
Jing Xu · Tom Griffiths -
2008 Poster: Modeling human function learning with Gaussian processes »
Tom Griffiths · Chris Lucas · Joseph Jay Williams · Michael Kalish -
2007 Oral: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths -
2007 Poster: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein -
2006 Poster: Particle Filtering for Nonparametric Bayesian Matrix Factorization »
Frank Wood · Tom Griffiths -
2006 Poster: Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Mod »
Mark Johnson · Tom Griffiths · Sharon Goldwater -
2006 Poster: A Nonparametric Bayesian Method for Inferring Features From Similarity Judgments »
Daniel Navarro · Tom Griffiths