Timezone: »
Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to characterize the generation process of local features. This choice has shown to be sufficient for traditional low dimensional local features, e.g., SIFT; and typically, good performance can be achieved with only a few hundred Gaussian distributions. However, the same number of Gaussians is insufficient to model the feature space spanned by higher dimensional local features, which have become popular recently. In order to improve the modeling capacity for high dimensional features, it turns out to be inefficient and computationally impractical to simply increase the number of Gaussians. In this paper, we propose a model in which each local feature is drawn from a Gaussian distribution whose mean vector is sampled from a subspace. With certain approximation, this model can be converted to a sparse coding procedure and the learning/inference problems can be readily solved by standard sparse coding methods. By calculating the gradient vector of the proposed model, we derive a new fisher vector encoding strategy, termed Sparse Coding based Fisher Vector Coding (SCFVC). Moreover, we adopt the recently developed Deep Convolutional Neural Network (CNN) descriptor as a high dimensional local feature and implement image classification with the proposed SCFVC. Our experimental evaluations demonstrate that our method not only significantly outperforms the traditional GMM based Fisher vector encoding but also achieves the state-of-the-art performance in generic object recognition, indoor scene, and fine-grained image classification problems.
Author Information
Lingqiao Liu (Univeristy of Adelaide)
Chunhua Shen (University of Adelaide)
Lei Wang (University of Wollongong)
Anton van den Hengel (University of Adelaide)
Chao Wang (University of Wollongong)
More from the Same Authors
-
2022 Poster: Text-Adaptive Multiple Visual Prototype Matching for Video-Text Retrieval »
Chengzhi Lin · Ancong Wu · Junwei Liang · Jun Zhang · Wenhang Ge · Wei-Shi Zheng · Chunhua Shen -
2022 Poster: Multi-dataset Training of Transformers for Robust Action Recognition »
Junwei Liang · Enwei Zhang · Jun Zhang · Chunhua Shen -
2022 Poster: SegViT: Semantic Segmentation with Plain Vision Transformers »
Bowen Zhang · Zhi Tian · Quan Tang · Xiangxiang Chu · Xiaolin Wei · Chunhua Shen · Yifan liu -
2022 Poster: Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images »
Zhi Tian · Xiangxiang Chu · Xiaoming Wang · Xiaolin Wei · Chunhua Shen -
2022 Poster: PyramidCLIP: Hierarchical Feature Alignment for Vision-language Model Pretraining »
Yuting Gao · Jinfeng Liu · Zihan Xu · Jun Zhang · Ke Li · Rongrong Ji · Chunhua Shen -
2022 : Distributionally Robust Bayesian Optimization with φ-divergences »
Hisham Husain · Vu Nguyen · Anton van den Hengel -
2023 Poster: Distributionally Robust Bayesian Optimization with $\varphi$-divergences »
Hisham Husain · Vu Nguyen · Anton van den Hengel -
2023 Poster: RanPAC: Random Projections and Pre-trained Models for Continual Learning »
Mark McDonnell · Dong Gong · Amin Parvaneh · Ehsan Abbasnejad · Anton van den Hengel -
2023 Poster: DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion Models »
威佳 吴 · Yuzhong Zhao · Hao Chen · Yuchao Gu · Rui Zhao · Yefei He · Hong Zhou · Mike Zheng Shou · Chunhua Shen -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Multi-dataset Training of Transformers for Robust Action Recognition »
Junwei Liang · Enwei Zhang · Jun Zhang · Chunhua Shen -
2022 Spotlight: Lightning Talks 3A-4 »
Jinzhi Zhang · Hao Jiang · Hongrui Cai · Qi Yi · Yang Jin · Zhi Tian · Rui Zhang · Wanquan Feng · Xiangxiang Chu · Ruofan Tang · yongzhi li · Yadong Mu · Zehuan Yuan · shaohui peng · Zheng Cao · Xiaoming Wang · Xuetao Feng · Xiaolin Wei · Jiaming Guo · Yadong Mu · Yan Wang · Jing Xiao · Xing Hu · Chunhua Shen · Ruqi Huang · Juyong Zhang · Zidong Du · LU FANG · xishan zhang · Qi Guo · Yunji Chen -
2022 Spotlight: Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images »
Zhi Tian · Xiangxiang Chu · Xiaoming Wang · Xiaolin Wei · Chunhua Shen -
2022 Poster: Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face Recognition »
Shuai Jia · Bangjie Yin · Taiping Yao · Shouhong Ding · Chunhua Shen · Xiaokang Yang · Chao Ma -
2022 Poster: DENSE: Data-Free One-Shot Federated Learning »
Jie Zhang · Chen Chen · Bo Li · Lingjuan Lyu · Shuang Wu · Shouhong Ding · Chunhua Shen · Chao Wu -
2022 Poster: Hierarchical Normalization for Robust Monocular Depth Estimation »
Chi Zhang · Wei Yin · Billzb Wang · Gang Yu · BIN FU · Chunhua Shen -
2020 Poster: Counterfactual Vision-and-Language Navigation: Unravelling the Unseen »
Amin Parvaneh · Ehsan Abbasnejad · Damien Teney · Javen Qinfeng Shi · Anton van den Hengel -
2020 Spotlight: Counterfactual Vision-and-Language Navigation: Unravelling the Unseen »
Amin Parvaneh · Ehsan Abbasnejad · Damien Teney · Javen Qinfeng Shi · Anton van den Hengel -
2020 Poster: On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law »
Damien Teney · Ehsan Abbasnejad · Kushal Kafle · Robik Shrestha · Christopher Kanan · Anton van den Hengel -
2015 Poster: Deeply Learning the Messages in Message Passing Inference »
Guosheng Lin · Chunhua Shen · Ian Reid · Anton van den Hengel -
2009 Poster: Positive Semidefinite Metric Learning with Boosting »
Chunhua Shen · Junae Kim · Lei Wang · Anton van den Hengel -
2008 Poster: PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning »
Chunhua Shen · Alan Welsh · Lei Wang