Timezone: »

 
Poster
Iterative Neural Autoregressive Distribution Estimator NADE-k
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio

Mon Dec 08 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None
Training of the neural autoregressive density estimator (NADE) can be viewed as doing one step of probabilistic inference on missing values in data. We propose a new model that extends this inference scheme to multiple steps, arguing that it is easier to learn to improve a reconstruction in $k$ steps rather than to learn to reconstruct in a single inference step. The proposed model is an unsupervised building block for deep learning that combines the desirable properties of NADE and multi-predictive training: (1) Its test likelihood can be computed analytically, (2) it is easy to generate independent samples from it, and (3) it uses an inference engine that is a superset of variational inference for Boltzmann machines. The proposed NADE-k is competitive with the state-of-the-art in density estimation on the two datasets tested.

Author Information

Tapani Raiko (Apple Inc.)
Yao Li (University of Montreal)
Kyunghyun Cho (New York University)

Kyunghyun Cho is an associate professor of computer science and data science at New York University and a research scientist at Facebook AI Research. He was a postdoctoral fellow at the Université de Montréal until summer 2015 under the supervision of Prof. Yoshua Bengio, and received PhD and MSc degrees from Aalto University early 2014 under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.

Yoshua Bengio (University of Montreal)

Yoshua Bengio (PhD'1991 in Computer Science, McGill University). After two post-doctoral years, one at MIT with Michael Jordan and one at AT&T Bell Laboratories with Yann LeCun, he became professor at the department of computer science and operations research at Université de Montréal. Author of two books (a third is in preparation) and more than 200 publications, he is among the most cited Canadian computer scientists and is or has been associate editor of the top journals in machine learning and neural networks. Since '2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since '2006 an NSERC Chair, since '2005 his is a Senior Fellow of the Canadian Institute for Advanced Research and since 2014 he co-directs its program focused on deep learning. He is on the board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-organized the Learning Workshop for 14 years and co-created the International Conference on Learning Representations. His interests are centered around a quest for AI through machine learning, and include fundamental questions on deep learning, representation learning, the geometry of generalization in high-dimensional spaces, manifold learning and biologically inspired learning algorithms.

More from the Same Authors