Timezone: »
Much of research in machine learning has centered around the search for inference algorithms that are both general-purpose and efficient. The problem is extremely challenging and general inference remains computationally expensive. We seek to address this problem by observing that in most specific applications of a model, we typically only need to perform a small subset of all possible inference computations. Motivated by this, we introduce just-in-time learning, a framework for fast and flexible inference that learns to speed up inference at run-time. Through a series of experiments, we show how this framework can allow us to combine the flexibility of sampling with the efficiency of deterministic message-passing.
Author Information
S. M. Ali Eslami (Microsoft Research)
Danny Tarlow (Google Research, Brain team)
Pushmeet Kohli (Microsoft Research)
John Winn (Microsoft Research)
More from the Same Authors
-
2021 Spotlight: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Spotlight: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 Poster: Structured Denoising Diffusion Models in Discrete State-Spaces »
Jacob Austin · Daniel D. Johnson · Jonathan Ho · Daniel Tarlow · Rianne van den Berg -
2021 Poster: Learning to Combine Per-Example Solutions for Neural Program Synthesis »
Disha Shrivastava · Hugo Larochelle · Daniel Tarlow -
2021 Poster: PLUR: A Unifying, Graph-Based View of Program Learning, Understanding, and Repair »
Zimin Chen · Vincent J Hellendoorn · Pascal Lamblin · Petros Maniatis · Pierre-Antoine Manzagol · Daniel Tarlow · Subhodeep Moitra -
2021 Poster: Learning Generalized Gumbel-max Causal Mechanisms »
Guy Lorberbom · Daniel D. Johnson · Chris Maddison · Daniel Tarlow · Tamir Hazan -
2017 : Pushmeet Kohli »
Pushmeet Kohli -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Poster: PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions »
Mikhail Figurnov · Aizhan Ibraimova · Dmitry Vetrov · Pushmeet Kohli -
2016 Poster: Adaptive Neural Compilation »
Rudy Bunel · Alban Desmaison · Pawan K Mudigonda · Pushmeet Kohli · Philip Torr -
2016 Poster: Batched Gaussian Process Bandit Optimization via Determinantal Point Processes »
Tarun Kathuria · Amit Deshpande · Pushmeet Kohli -
2015 Poster: Efficient Non-greedy Optimization of Decision Trees »
Mohammad Norouzi · Maxwell Collins · Matthew A Johnson · David Fleet · Pushmeet Kohli -
2015 Poster: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2015 Spotlight: Deep Convolutional Inverse Graphics Network »
Tejas Kulkarni · William Whitney · Pushmeet Kohli · Josh Tenenbaum -
2014 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2014 Poster: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2014 Oral: A* Sampling »
Chris Maddison · Danny Tarlow · Tom Minka -
2013 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Sasha Rakhlin · Danny Tarlow -
2013 Poster: Decision Jungles: Compact and Rich Models for Classification »
Jamie Shotton · Toby Sharp · Pushmeet Kohli · Sebastian Nowozin · John Winn · Antonio Criminisi -
2013 Poster: Learning to Pass Expectation Propagation Messages »
Nicolas Heess · Danny Tarlow · John Winn -
2012 Workshop: Perturbations, Optimization, and Statistics »
Tamir Hazan · George Papandreou · Danny Tarlow -
2012 Poster: Multiple Choice Learning: Learning to Produce Multiple Structured Outputs »
Abner Guzmán-Rivera · Dhruv Batra · Pushmeet Kohli -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: Context-Sensitive Decision Forests for Object Detection »
Peter Kontschieder · Samuel Rota Bulò · Antonio Criminisi · Pushmeet Kohli · Marcello Pelillo · Horst Bischof -
2012 Poster: A Generative Model for Parts-based Object Segmentation »
S. M. Ali Eslami · Chris Williams -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Poster: Higher-Order Correlation Clustering for Image Segmentation »
Sungwoong Kim · Sebastian Nowozin · Pushmeet Kohli · Chang D. D Yoo -
2009 Poster: Local Rules for Global MAP: When Do They Work ? »
Kyomin Jung · Pushmeet Kohli · Devavrat Shah -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Demonstration: Infer.NET: Software for Graphical Models »
Tom Minka · John Winn · John P Guiver · Anitha Kannan -
2008 Poster: Gates »
Tom Minka · John Winn -
2008 Spotlight: Gates »
Tom Minka · John Winn -
2006 Poster: Clustering appearance and shape by learning jigsaws »
Anitha Kannan · John Winn · Carsten Rother -
2006 Talk: Clustering appearance and shape by learning jigsaws »
Anitha Kannan · John Winn · Carsten Rother -
2006 Poster: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Spotlight: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller