Timezone: »
Branch-and-bound is a widely used method in combinatorial optimization, including mixed integer programming, structured prediction and MAP inference. While most work has been focused on developing problem-specific techniques, little is known about how to systematically design the node searching strategy on a branch-and-bound tree. We address the key challenge of learning an adaptive node searching order for any class of problem solvable by branch-and-bound. Our strategies are learned by imitation learning. We apply our algorithm to linear programming based branch-and-bound for solving mixed integer programs (MIP). We compare our method with one of the fastest open-source solvers, SCIP; and a very efficient commercial solver, Gurobi. We demonstrate that our approach achieves better solutions faster on four MIP libraries.
Author Information
He He (NYU)
Hal Daumé III (University of Maryland - College Park)
Hal Daumé III wields a professor appointment in Computer Science and Language Science at the University of Maryland, and spends time as a principal researcher in the machine learning group and fairness group at Microsoft Research in New York City. He and his wonderful advisees study questions related to how to get machines to become more adept at human language, by developing models and algorithms that allow them to learn from data. The two major questions that really drive their research these days are: (1) how can we get computers to learn language through natural interaction with people/users? and (2) how can we do this in a way that promotes fairness, transparency and explainability in the learned models?
Jason Eisner (Johns Hopkins + Microsoft)
Jason Eisner is Professor of Computer Science at Johns Hopkins University, as well as Director of Research at Microsoft Semantic Machines. He is a Fellow of the Association for Computational Linguistics. At Johns Hopkins, he is also affiliated with the Center for Language and Speech Processing, the Machine Learning Group, the Cognitive Science Department, and the national Center of Excellence in Human Language Technology. His goal is to develop the probabilistic modeling, inference, and learning techniques needed for a unified model of all kinds of linguistic structure. His 135+ papers have presented various algorithms for parsing, machine translation, and weighted finite-state machines; formalizations, algorithms, theorems, and empirical results in computational phonology; and unsupervised or semi-supervised learning methods for syntax, morphology, and word-sense disambiguation. He is also the lead designer of Dyna, a new declarative programming language that provides an infrastructure for AI research. He has received two school-wide awards for excellence in teaching, as well as recent Best Paper Awards at ACL 2017 and EMNLP 2019.
More from the Same Authors
-
2021 : Poster: The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
Irene Y Chen · Hal Daumé III · Solon Barocas -
2022 Workshop: HCAI@NeurIPS 2022, Human Centered AI »
Michael Muller · Plamen P Angelov · Hal Daumé III · Shion Guha · Q.Vera Liao · Nuria Oliver · David Piorkowski -
2021 : The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
Irene Y Chen · Hal Daumé III · Solon Barocas -
2020 Poster: Noise-Contrastive Estimation for Multivariate Point Processes »
Hongyuan Mei · Tom Wan · Jason Eisner -
2019 : Panel Discussion »
Jacob Andreas · Edward Gibson · Stefan Lee · Noga Zaslavsky · Jason Eisner · Jürgen Schmidhuber -
2019 : Invited Talk - 3 »
Jason Eisner -
2019 Poster: Reinforcement Learning with Convex Constraints »
Sobhan Miryoosefi · Kianté Brantley · Hal Daumé III · Miro Dudik · Robert Schapire -
2019 Tutorial: Imitation Learning and its Application to Natural Language Generation »
Kyunghyun Cho · Hal Daumé III -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 : Jason Eisner, "BiLSTM-FSTs and Neural FSTs" »
Jason Eisner -
2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III -
2017 : Competition V: Human-Computer Question Answering »
Jordan Boyd-Graber · Hal Daumé III · He He · Mohit Iyyer · Pedro Rodriguez -
2017 Poster: The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process »
Hongyuan Mei · Jason Eisner -
2016 Workshop: Let's Discuss: Learning Methods for Dialogue »
Hal Daumé III · Paul Mineiro · Amanda Stent · Jason E Weston -
2016 Poster: A Credit Assignment Compiler for Joint Prediction »
Kai-Wei Chang · He He · Stephane Ross · Hal Daumé III · John Langford -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2013 Poster: Binary to Bushy: Bayesian Hierarchical Clustering with the Beta Coalescent »
Yuening Hu · Jordan Boyd-Graber · Hal Daumé III · Z. Irene Ying -
2012 Poster: Imitation Learning by Coaching »
He He · Hal Daumé III · Jason Eisner -
2012 Poster: Simultaneously Leveraging Output and Task Structures for Multiple-Output Regression »
Piyush Rai · Abhishek Kumar · Hal Daumé III -
2012 Poster: Learned Prioritization for Trading Off Accuracy and Speed »
Jiarong Jiang · Adam Teichert · Hal Daumé III · Jason Eisner -
2011 Poster: Message-Passing for Approximate MAP Inference with Latent Variables »
Jiarong Jiang · Piyush Rai · Hal Daumé III -
2011 Poster: Co-regularized Multi-view Spectral Clustering »
Abhishek Kumar · Piyush Rai · Hal Daumé III -
2010 Poster: Learning Multiple Tasks using Manifold Regularization »
Arvind Agarwal · Hal Daumé III · Samuel Gerber -
2010 Poster: Co-regularization Based Semi-supervised Domain Adaptation »
Hal Daumé III · Abhishek Kumar · Avishek Saha -
2009 Poster: Multi-Label Prediction via Sparse Infinite CCA »
Piyush Rai · Hal Daumé III -
2008 Poster: Nonparametric Bayesian Sparse Hierarchical Factor Modeling and Regression »
Piyush Rai · Hal Daumé III -
2007 Poster: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Oral: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy