Timezone: »

Low-dimensional models of neural population activity in sensory cortical circuits
Evan W Archer · Urs Koster · Jonathan W Pillow · Jakob H Macke

Mon Dec 08 04:00 PM -- 08:59 PM (PST) @ Level 2, room 210D #None

Neural responses in visual cortex are influenced by visual stimuli and by ongoing spiking activity in local circuits. An important challenge in computational neuroscience is to develop models that can account for both of these features in large multi-neuron recordings and to reveal how stimulus representations interact with and depend on cortical dynamics. Here we introduce a statistical model of neural population activity that integrates a nonlinear receptive field model with a latent dynamical model of ongoing cortical activity. This model captures the temporal dynamics, effective network connectivity in large population recordings, and correlations due to shared stimulus drive as well as common noise. Moreover, because the nonlinear stimulus inputs are mixed by the ongoing dynamics, the model can account for a relatively large number of idiosyncratic receptive field shapes with a small number of nonlinear inputs to a low-dimensional latent dynamical model. We introduce a fast estimation method using online expectation maximization with Laplace approximations. Inference scales linearly in both population size and recording duration. We apply this model to multi-channel recordings from primary visual cortex and show that it accounts for a large number of individual neural receptive fields using a small number of nonlinear inputs and a low-dimensional dynamical model.

Author Information

Evan W Archer (Sony AI)
Urs Koster (Cerebras Systems)
Jonathan W Pillow (UT Austin)

Jonathan Pillow is an assistant professor in Psychology and Neurobiology at the University of Texas at Austin. He graduated from the University of Arizona in 1997 with a degree in mathematics and philosophy, and was a U.S. Fulbright fellow in Morocco in 1998. He received his Ph.D. in neuroscience from NYU in 2005, and was a Royal Society postdoctoral reserach fellow at the Gatsby Computational Neuroscience Unit, UCL from 2005 to 2008. His recent work involves statistical methods for understanding the neural code in single neurons and neural populations, and his lab conducts psychophysical experiments designed to test Bayesian models of human sensory perception.

Jakob H Macke (University of Tübingen & MPI IS Tübingen)

More from the Same Authors