Poster
Multi-Class Deep Boosting
Vitaly Kuznetsov · Mehryar Mohri · Umar Syed

Wed Dec 10th 07:00 -- 11:59 PM @ Level 2, room 210D #None

We present new ensemble learning algorithms for multi-class classification. Our algorithms can use as a base classifier set a family of deep decision trees or other rich or complex families and yet benefit from strong generalization guarantees. We give new data-dependent learning bounds for convex ensembles in the multi-class classification setting expressed in terms of the Rademacher complexities of the sub-families composing the base classifier set, and the mixture weight assigned to each sub-family. These bounds are finer than existing ones both thanks to an improved dependency on the number of classes and, more crucially, by virtue of a more favorable complexity term expressed as an average of the Rademacher complexities based on the ensemble’s mixture weights. We introduce and discuss several new multi-class ensemble algorithms benefiting from these guarantees, prove positive results for the H-consistency of several of them, and report the results of experiments showing that their performance compares favorably with that of multi-class versions of AdaBoost and Logistic Regression and their L1-regularized counterparts.

Author Information

Vitaly Kuznetsov (HRT)

Vitaly Kuznetsov is a research scientist at Google. Prior to joining Google Research, Vitaly received his Ph.D. in mathematics from the Courant Institute of Mathematical Sciences at New York University. Vitaly has contributed to a number of different areas in machine learning, in particular the development of the theory and algorithms for forecasting non-stationary time series. At Google, his work is focused on the design and implementation of large-scale machine learning tools and algorithms for time series modeling, forecasting and anomaly detection. His current research interests include all aspects of applied and theoretical time series analysis, in particular, in non-stationary environments.

Mehryar Mohri (Courant Inst. of Math. Sciences & Google Research)
Umar Syed (Google Research)

More from the Same Authors