Timezone: »
Hierarchical feed-forward networks have been successfully applied in object recognition. At each level of the hierarchy, features are extracted and encoded, followed by a pooling step. Within this processing pipeline, the common trend is to learn the feature coding templates, often referred as codebook entries, filters, or over-complete basis. Recently, an approach that apparently does not use templates has been shown to obtain very promising results. This is the second-order pooling (O2P). In this paper, we analyze O2P as a coding-pooling scheme. We find that at testing phase, O2P automatically adapts the feature coding templates to the input features, rather than using templates learned during the training phase. From this finding, we are able to bring common concepts of coding-pooling schemes to O2P, such as feature quantization. This allows for significant accuracy improvements of O2P in standard benchmarks of image classification, namely Caltech101 and VOC07.
Author Information
Xavier Boix (ETH Zurich)
Gemma Roig (ETH Zurich)
Salomon Diether (ETHZ)
Luc V Gool (Computer Vision Lab, ETH Zurich)
More from the Same Authors
-
2019 Poster: Gated CRF Loss for Weakly Supervised Semantic Image Segmentation »
Anton Obukhov · Stamatios Georgoulis · Dengxin Dai · Luc V Gool -
2021 : Spatial-Temporal Gated Transformersfor Efficient Video Processing »
Yawei Li · Babak Ehteshami Bejnordi · Bert Moons · Tijmen Blankevoort · Amirhossein Habibian · Radu Timofte · Luc V Gool -
2021 Poster: Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations »
Wouter Van Gansbeke · Simon Vandenhende · Stamatios Georgoulis · Luc V Gool -
2020 Poster: GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network »
Prune Truong · Martin Danelljan · Luc V Gool · Radu Timofte -
2020 Poster: Soft Contrastive Learning for Visual Localization »
Janine Thoma · Danda Pani Paudel · Luc V Gool -
2017 Poster: Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations »
Eirikur Agustsson · Fabian Mentzer · Michael Tschannen · Lukas Cavigelli · Radu Timofte · Luca Benini · Luc V Gool -
2016 Poster: Dynamic Filter Networks »
Xu Jia · Bert De Brabandere · Tinne Tuytelaars · Luc V Gool -
2014 Poster: Quantized Kernel Learning for Feature Matching »
Danfeng Qin · Xuanli Chen · Matthieu Guillaumin · Luc V Gool -
2011 Poster: Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities »
Angela Yao · Juergen Gall · Luc V Gool · Raquel Urtasun