Timezone: »
Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on either variational approximation or Monte Carlo sampling. This paper presents a novel spectral decomposition algorithm to recover the parameters of supervised latent Dirichlet allocation (sLDA) models. The Spectral-sLDA algorithm is provably correct and computationally efficient. We prove a sample complexity bound and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on a diverse range of synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the algorithm.
Author Information
Yining Wang (Carnegie Mellon University)
Jun Zhu (Tsinghua University)
More from the Same Authors
-
2020 Poster: Multi-label classification: do Hamming loss and subset accuracy really conflict with each other? »
Guoqiang Wu · Jun Zhu -
2020 Poster: Bi-level Score Matching for Learning Energy-based Latent Variable Models »
Fan Bao · Chongxuan LI · Kun Xu · Hang Su · Jun Zhu · Bo Zhang -
2020 Poster: Further Analysis of Outlier Detection with Deep Generative Models »
Ziyu Wang · Bin Dai · David P Wipf · Jun Zhu -
2020 Poster: Efficient Learning of Generative Models via Finite-Difference Score Matching »
Tianyu Pang · Kun Xu · Chongxuan LI · Yang Song · Stefano Ermon · Jun Zhu -
2020 Poster: Calibrated Reliable Regression using Maximum Mean Discrepancy »
Peng Cui · Wenbo Hu · Jun Zhu -
2020 Poster: Boosting Adversarial Training with Hypersphere Embedding »
Tianyu Pang · Xiao Yang · Yinpeng Dong · Kun Xu · Jun Zhu · Hang Su -
2020 Poster: Adversarial Distributional Training for Robust Deep Learning »
Yinpeng Dong · Zhijie Deng · Tianyu Pang · Jun Zhu · Hang Su -
2020 Poster: Understanding and Exploring the Network with Stochastic Architectures »
Zhijie Deng · Yinpeng Dong · Shifeng Zhang · Jun Zhu -
2019 Poster: Improving Black-box Adversarial Attacks with a Transfer-based Prior »
Shuyu Cheng · Yinpeng Dong · Tianyu Pang · Hang Su · Jun Zhu -
2019 Poster: Generative Well-intentioned Networks »
Justin Cosentino · Jun Zhu -
2019 Poster: Multi-objects Generation with Amortized Structural Regularization »
Kun Xu · Chongxuan LI · Jun Zhu · Bo Zhang -
2018 Poster: Towards Robust Detection of Adversarial Examples »
Tianyu Pang · Chao Du · Yinpeng Dong · Jun Zhu -
2018 Spotlight: Towards Robust Detection of Adversarial Examples »
Tianyu Pang · Chao Du · Yinpeng Dong · Jun Zhu -
2018 Poster: Graphical Generative Adversarial Networks »
Chongxuan LI · Max Welling · Jun Zhu · Bo Zhang -
2017 Poster: Triple Generative Adversarial Nets »
Chongxuan LI · Kun Xu · Jun Zhu · Bo Zhang -
2017 Poster: On the Power of Truncated SVD for General High-rank Matrix Estimation Problems »
Simon Du · Yining Wang · Aarti Singh -
2017 Poster: Population Matching Discrepancy and Applications in Deep Learning »
Jianfei Chen · Chongxuan LI · Yizhong Ru · Jun Zhu -
2016 Poster: Data Poisoning Attacks on Factorization-Based Collaborative Filtering »
Bo Li · Yining Wang · Aarti Singh · Yevgeniy Vorobeychik -
2016 Poster: Kernel Bayesian Inference with Posterior Regularization »
Yang Song · Jun Zhu · Yong Ren -
2016 Poster: Stochastic Gradient Geodesic MCMC Methods »
Chang Liu · Jun Zhu · Yang Song -
2016 Poster: Conditional Generative Moment-Matching Networks »
Yong Ren · Jun Zhu · Jialian Li · Yucen Luo -
2016 Poster: Online and Differentially-Private Tensor Decomposition »
Yining Wang · Anima Anandkumar -
2015 Poster: Differentially private subspace clustering »
Yining Wang · Yu-Xiang Wang · Aarti Singh -
2015 Poster: Max-Margin Majority Voting for Learning from Crowds »
TIAN TIAN · Jun Zhu -
2015 Poster: Max-Margin Deep Generative Models »
Chongxuan Li · Jun Zhu · Tim Shi · Bo Zhang -
2015 Poster: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Spotlight: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Robust Bayesian Max-Margin Clustering »
Changyou Chen · Jun Zhu · Xinhua Zhang -
2013 Poster: Scalable Inference for Logistic-Normal Topic Models »
Jianfei Chen · Jun Zhu · Zi Wang · Xun Zheng · Bo Zhang -
2012 Poster: Monte Carlo Methods for Maximum Margin Supervised Topic Models »
Qixia Jiang · Jun Zhu · Maosong Sun · Eric Xing -
2012 Poster: Bayesian Nonparametric Maximum Margin Matrix Factorization for Collaborative Prediction »
Minjie Xu · Jun Zhu · Bo Zhang -
2011 Poster: Infinite Latent SVM for Classification and Multi-task Learning »
Jun Zhu · Ning Chen · Eric Xing -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Poster: Predictive Subspace Learning for Multi-view Data: a Large Margin Approach »
Ning Chen · Jun Zhu · Eric Xing -
2010 Poster: Adaptive Multi-Task Lasso: with Application to eQTL Detection »
Seunghak Lee · Jun Zhu · Eric Xing -
2010 Poster: Efficient Relational Learning with Hidden Variable Detection »
Ni Lao · Jun Zhu · Liu Xinwang · Yandong Liu · William Cohen -
2008 Poster: Partially Observed Maximum Entropy Discrimination Markov Networks »
Jun Zhu · Eric Xing · Bo Zhang