Timezone: »
In this paper, we derive theoretical bounds for the long-term influence of a node in an Independent Cascade Model (ICM). We relate these bounds to the spectral radius of a particular matrix and show that the behavior is sub-critical when this spectral radius is lower than 1. More specifically, we point out that, in general networks, the sub-critical regime behaves in O(sqrt(n)) where n is the size of the network, and that this upper bound is met for star-shaped networks. We apply our results to epidemiology and percolation on arbitrary networks, and derive a bound for the critical value beyond which a giant connected component arises. Finally, we show empirically the tightness of our bounds for a large family of networks.
Author Information
Remi Lemonnier (CMLA - ENS Cachan / 1000mercis, Paris)
Kevin Scaman (ENS Cachan - CMLA)
Nicolas Vayatis (Ecole Normale Supérieure de Cachan)
More from the Same Authors
-
2021 : Handling Distribution Shift in Tire Design »
Antoine De mathelin · François Deheeger · Mathilde MOUGEOT · Nicolas Vayatis -
2015 Poster: Anytime Influence Bounds and the Explosive Behavior of Continuous-Time Diffusion Networks »
Kevin Scaman · Rémi Lemonnier · Nicolas Vayatis -
2012 Poster: Link Prediction in Graphs with Autoregressive Features »
Emile Richard · Stephane Gaiffas · Nicolas Vayatis -
2010 Poster: Link Discovery using Graph Feature Tracking »
Emile Richard · Nicolas Baskiotis · Theos Evgeniou · Nicolas Vayatis -
2009 Poster: AUC optimization and the two-sample problem »
Stéphan Clémençon · Nicolas Vayatis · Marine Depecker -
2008 Poster: Empirical performance maximization for linear rank statistics »
Stephan Clémençon · Nicolas Vayatis -
2008 Poster: On Bootstrapping the ROC Curve »
Patrice Bertail · Stephan Clémençon · Nicolas Vayatis -
2008 Poster: Overlaying classifiers: a practical approach for optimal ranking »
Stephan Clémençon · Nicolas Vayatis