Timezone: »
State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer the possibility to straightforwardly trade off model capacity and computational cost whilst avoiding overfitting. Our main algorithm uses a hybrid inference approach combining variational Bayes and sequential Monte Carlo. We also present stochastic variational inference and online learning approaches for fast learning with long time series.
Author Information
Roger Frigola (University of Cambridge)
Yutian Chen (Google DeepMind)
Carl Edward Rasmussen (University of Cambridge)
More from the Same Authors
-
2022 : Gaussian Process parameterized Covariance Kernels for Non-stationary Regression »
Vidhi Lalchand · Talay Cheema · Laurence Aitchison · Carl Edward Rasmussen -
2022 Poster: Sparse Gaussian Process Hyperparameters: Optimize or Integrate? »
Vidhi Lalchand · Wessel Bruinsma · David Burt · Carl Edward Rasmussen -
2021 Poster: Kernel Identification Through Transformers »
Fergus Simpson · Ian Davies · Vidhi Lalchand · Alessandro Vullo · Nicolas Durrande · Carl Edward Rasmussen -
2021 Poster: Marginalised Gaussian Processes with Nested Sampling »
Fergus Simpson · Vidhi Lalchand · Carl Edward Rasmussen -
2020 : Combining variational autoencoder representations with structural descriptors improves prediction of docking scores »
Miguel Garcia-Ortegon · Carl Edward Rasmussen · Hiroshi Kajino -
2020 Poster: Ensembling geophysical models with Bayesian Neural Networks »
Ushnish Sengupta · Matt Amos · Scott Hosking · Carl Edward Rasmussen · Matthew Juniper · Paul Young -
2017 Poster: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Oral: Convolutional Gaussian Processes »
Mark van der Wilk · Carl Edward Rasmussen · James Hensman -
2017 Poster: Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs »
Rowan McAllister · Carl Edward Rasmussen -
2016 Poster: Understanding Probabilistic Sparse Gaussian Process Approximations »
Matthias Bauer · Mark van der Wilk · Carl Edward Rasmussen -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen -
2013 Poster: Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC »
Roger Frigola · Fredrik Lindsten · Thomas Schön · Carl Edward Rasmussen -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2011 Poster: Gaussian Process Training with Input Noise »
Andrew McHutchon · Carl Edward Rasmussen -
2011 Poster: Additive Gaussian Processes »
David Duvenaud · Hannes Nickisch · Carl Edward Rasmussen -
2010 Poster: On Herding and the Perceptron Cycling Theorem »
Andrew E Gelfand · Yutian Chen · Laurens van der Maaten · Max Welling -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters -
2006 Tutorial: Advances in Gaussian Processes »
Carl Edward Rasmussen