Timezone: »
Probabilistic programming is a general-purpose means of expressing and automatically performing model-based inference. A key characteristic of many probabilistic programming systems is that models can be compactly expressed in terms of executable generative procedures, rather than in declarative mathematical notation. For this reason, along with automated or programmable inference, probabilistic programming has the potential to increase the number of people who can build and understand their own models. It also could make the development and testing of new general-purpose inference algorithms more efficient, and could accelerate the exploration and development of new models for application-specific use.
The primary goals of this tutorial will be to introduce probabilistic programming both as a general concept and in terms of how current systems work, to examine the historical academic context in which probabilistic programming arose, and to expose some challenges unique to probabilistic programming.
Author Information
Frank Wood (University of Oxford)
Dr. Wood is an associate professor in the Department of Engineering Science at the University of Oxford. Before that he was an assistant professor of Statistics at Columbia University and a research scientist at the Columbia Center for Computational Learning Systems. He formerly was a postdoctoral fellow of the Gatsby Computational Neuroscience Unit of the University College London. He holds a PhD from Brown University (â07) and BS from Cornell University (â96), both in computer science. Dr. Wood is the original architect of both the Anglican and Probabilistic-C probabilistic programming systems. He conducts AI-driven research at the boundary of probabilistic programming, Bayesian modeling, and Monte Carlo methods. Dr. Wood holds 6 patents, has authored over 50 papers, received the AISTATS best paper award in 2009, and has been awarded faculty research awards from Xerox, Google and Amazon. Prior to his academic career he was a successful entrepreneur having run and sold the content-based image retrieval company ToFish! to AOL/Time Warner and served as CEO of Interfolio.
More from the Same Authors
-
2021 : A Closer Look at Gradient Estimators with Reinforcement Learning as Inference »
Jonathan Lavington · Michael Teng · Mark Schmidt · Frank Wood -
2018 : TBC 1 »
Frank Wood -
2017 Workshop: Deep Learning for Physical Sciences »
Atilim Gunes Baydin · Mr. Prabhat · Kyle Cranmer · Frank Wood -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2011 Poster: Hierarchically Supervised Latent Dirichlet Allocation »
Adler J Perotte · Frank Wood · Noemie Elhadad · Nicholas Bartlett -
2010 Spotlight: Probabilistic Deterministic Infinite Automata »
David Pfau · Nicholas Bartlett · Frank Wood -
2010 Poster: Probabilistic Deterministic Infinite Automata »
David Pfau · Nicholas Bartlett · Frank Wood -
2008 Poster: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow -
2008 Spotlight: Characterizing neural dependencies with Poisson copula models »
Pietro Berkes · Frank Wood · Jonathan W Pillow -
2008 Poster: Dependent Dirichlet Process Spike Sorting »
Jan Gasthaus · Frank Wood · Dilan Gorur · Yee Whye Teh -
2006 Poster: Particle Filtering for Nonparametric Bayesian Matrix Factorization »
Frank Wood · Tom Griffiths