Timezone: »
UP TO DATE SCHEDULE is at Website: tiny.cc/mlaihci or https://sites.google.com/site/mlaihci/
(MLAIHCI – Machine Learning, Artificial Intelligence, Human-Computer Interaction)
TENTATIVE SCHEDULE (tiny.cc/mlaihci has UPDATED version)
8:50. Introductions
9:00
Michael Littman, Brown University: "Reinforcement Learning from users: New algorithms and frameworks"
10-10:30 Coffee Break
Machine Teaching
10:30
Jerry Zhu, University of Wisconsin Madison: "Machine Teaching as a Framework for Personalized Education"
Hoang M. Le, Yisong Yue, & Peter Carr. "Smooth Imitation Learning." [PDF]
11:45-1:30 Lunch.
Embedding Algorithms in User Technologies
1:30
John Langford, Microsoft Research: "An Interactive Learning Platform for Making Decisions"
Neil Heffernan, Worcester Polytechnic Institute: "Enabling real-time evaluation of crowdsourced machine learning algorithms: Experimentation and Personalization in online math problems on ASSISTments.org"
3:00-4:00 Spotlights & Posters
4-4:30 coffee break
4:30
Ambuj Tewari, Huitian Lei, & Susan Murphy. University of Michigan. "From Ads to Interventions: Contextual Bandit Algorithms for Mobile Health". (NIH application to "Heartsteps")
5:30-6:30 Conclusions & Future Directions
PRESENTATIONS
Jerry Zhu, University of Wisconsin Madison: "Machine Teaching as a Framework for Personalized Education"
Michael Littman, Brown University: "Reinforcement Learning from users: New algorithms and frameworks"
John Langford, Microsoft Research: "An Interactive Learning Platform for Making Decisions"
Neil Heffernan, Worcester Polytechnic Institute: "Enabling real-time evaluation of crowdsourced machine learning algorithms: Experimentation and Personalization in online math problems on ASSISTments.org"
Ambuj Tewari, Huitian Lei, & Susan Murphy. University of Michigan. "From Ads to Interventions: Contextual Bandit Algorithms for Mobile Health". (NIH application to "Heartsteps")
Bei Peng, James MacGlashan, Robert Loftin, Michael L. Littman, David L. Roberts, & Matthew E. Taylor. "A Need for Speed: Adapting Agent Action Speed to Improve Performance of Task Learning from Turkers."
Wei Sun, Anshul Sheopuri, Ying Li, & Thales S. Teixeira. "Cognitive Advertisement Design via Dynamic Bayesian Network."
Stefanos Poulis & Sanjoy Dasgupta. "Interactive annotation with feature feedback: from theory to practice."
Jens Schreiter, Mona Eberts, Duy Nguyen-Tuong, & Marc Toussaint. "Safe Exploration for Active Learning with Gaussian Process Models."
Hoang M. Le, Yisong Yue, & Peter Carr. "Smooth Imitation Learning."
Bo Zhang. "Machine Teaching via Simulation Optimization."
He He, Paul Mineiro, & Nikos Karampatziakis. "Active Information Acquisition."
Adish Singla, Sebastian Tschiatschek, & Anrdreas Krause. "Adaptive Sampling for Noisy Submodular Maximization with Applications to Crowdsourced Image Collection Summarization."
Theja Tulabandhula. "Learning Personalized Optimal Control for Repeatedly Operated Systems."
WORKSHOP TOPICS
How can machine learning be embedded into user technologies to actively guide sampling of data and discovery through interventions, while also automatically optimizing and personalizing for user outcomes?
For example:
> How do Massive Open Online Courses automatically improve over time to maximize student learning and enjoyment as data is collected?
> How can mobile apps minimize negative health behaviors like smoking and overeating by testing what interventions work for which people?
> What machine learning methods have been successful versus ineffective in industry applications that trade off exploration and exploitation, such as personalized search and recommendations?
A great deal of machine learning already addresses the 'big data' collected from people's use of online technologies, from well known Internet companies to novel settings like online education and health apps.
But far less research has analyzed how algorithms can learn about the world more effectively by adapting online user technologies to make decisions about what data is collected, how experiments for causal discovery are conducted, and how to negotiate tradeoffs between exploration versus exploitation in real-time and with limited computational resources.
Algorithms in real-world technologies must also optimize outcomes for users by adapting and personalizing how technology interacts with people. Ideally, algorithms instantiated in adaptive technologies appropriately trade off exploration – drawing inferences and guiding their learning in real time to do more effective learning and discovery – with exploitation – immediately deploying what is dynamically learned from resource bounded computations to optimize user outcomes through technology personalization.
Themes of the workshop will include:
> Generalizations and applications of reinforcement learning for real-time policy learning
> Contextual and multi-armed bandits for active experimentation and personalization
> Selecting and distributing interventions for causal discovery, optimal experimental design
> Active, Online, Sequential Machine Learning
> Interactive machine learning
Around the common theme of algorithms that learn from intervening and collecting data in real-world large-scale online technologies, the workshop will bring together researchers in machine learning as well as statistics, human-computer interaction, education, health, and cognitive science. This allows sharing of critical knowledge about how online technologies can be designed in a way that advances machine learning research, as well as extending the ties between applications of machine learning to online websites and services.
Author Information
Joseph Jay Williams (Harvard University)
Yasin Abbasi Yadkori (Queensland University of Technology)
Finale Doshi-Velez (Harvard)
More from the Same Authors
-
2021 Spotlight: Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Making by Reinforcement Learning »
Kai Wang · Sanket Shah · Haipeng Chen · Andrew Perrault · Finale Doshi-Velez · Milind Tambe -
2021 : Identification of Subgroups With Similar Benefits in Off-Policy Policy Evaluation »
Ramtin Keramati · Omer Gottesman · Leo Celi · Finale Doshi-Velez · Emma Brunskill -
2022 : An Empirical Analysis of the Advantages of Finite vs.~Infinite Width Bayesian Neural Networks »
Jiayu Yao · Yaniv Yacoby · Beau Coker · Weiwei Pan · Finale Doshi-Velez -
2022 : Feature-Level Synthesis of Human and ML Insights »
Isaac Lage · Sonali Parbhoo · Finale Doshi-Velez -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Varshini Subhash · Zixi Chen · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Zixi Chen · Varshini Subhash · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 : (When) Are Contrastive Explanations of Reinforcement Learning Helpful? »
Sanjana Narayanan · Isaac Lage · Finale Doshi-Velez -
2022 : Leveraging Human Features at Test-Time »
Isaac Lage · Sonali Parbhoo · Finale Doshi-Velez -
2022 : An Empirical Analysis of the Advantages of Finite v.s. Infinite Width Bayesian Neural Networks »
Jiayu Yao · Yaniv Yacoby · Beau Coker · Weiwei Pan · Finale Doshi-Velez -
2023 Poster: Context-lumpable stochastic bandits »
Chung-Wei Lee · Qinghua Liu · Yasin Abbasi Yadkori · Chi Jin · Tor Lattimore · Csaba Szepesvari -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Varshini Subhash · Zixi Chen · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 Poster: Addressing Leakage in Concept Bottleneck Models »
Marton Havasi · Sonali Parbhoo · Finale Doshi-Velez -
2022 Poster: Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare »
Shengpu Tang · Maggie Makar · Michael Sjoding · Finale Doshi-Velez · Jenna Wiens -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : LAF | Panel discussion »
Aaron Snoswell · Jake Goldenfein · Finale Doshi-Velez · Evi Micha · Ivana Dusparic · Jonathan Stray -
2021 : LAF | The Role of Explanation in RL Legitimacy, Accountability, and Feedback »
Finale Doshi-Velez -
2021 : Invited talk #2: Finale Doshi-Velez »
Finale Doshi-Velez -
2021 Poster: Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Making by Reinforcement Learning »
Kai Wang · Sanket Shah · Haipeng Chen · Andrew Perrault · Finale Doshi-Velez · Milind Tambe -
2020 : Batch RL Models Built for Validation »
Finale Doshi-Velez -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Poster: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Spotlight: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Poster: Model Selection in Contextual Stochastic Bandit Problems »
Aldo Pacchiano · My Phan · Yasin Abbasi Yadkori · Anup Rao · Julian Zimmert · Tor Lattimore · Csaba Szepesvari -
2020 Poster: Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs »
Jianzhun Du · Joseph Futoma · Finale Doshi-Velez -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 : Invited talk #4 »
Finale Doshi-Velez -
2019 : Finale Doshi-Velez: Combining Statistical methods with Human Input for Evaluation and Optimization in Batch Settings »
Finale Doshi-Velez -
2019 Poster: Thompson Sampling and Approximate Inference »
My Phan · Yasin Abbasi Yadkori · Justin Domke -
2019 Poster: Bootstrapping Upper Confidence Bound »
Botao Hao · Yasin Abbasi Yadkori · Zheng Wen · Guang Cheng -
2018 : Finale Doshi-Velez »
Finale Doshi-Velez -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Finale Doshi-Velez »
Finale Doshi-Velez -
2018 Poster: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Spotlight: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Poster: Representation Balancing MDPs for Off-policy Policy Evaluation »
Yao Liu · Omer Gottesman · Aniruddh Raghu · Matthieu Komorowski · Aldo Faisal · Finale Doshi-Velez · Emma Brunskill -
2018 Poster: Scalar Posterior Sampling with Applications »
Georgios Theocharous · Zheng Wen · Yasin Abbasi Yadkori · Nikos Vlassis -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Finale Doshi-Velez »
Finale Doshi-Velez -
2017 : Automatic Model Selection in BNNs with Horseshoe Priors »
Finale Doshi-Velez -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 : Contributed talk: Beyond Sparsity: Tree-based Regularization of Deep Models for Interpretability »
Mike Wu · Sonali Parbhoo · Finale Doshi-Velez -
2017 : Invited talk: The Role of Explanation in Holding AIs Accountable »
Finale Doshi-Velez -
2017 Poster: Near Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem »
Yasin Abbasi Yadkori · Peter Bartlett · Victor Gabillon -
2017 Poster: Conservative Contextual Linear Bandits »
Abbas Kazerouni · Mohammad Ghavamzadeh · Yasin Abbasi · Benjamin Van Roy -
2017 Poster: Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes »
Taylor Killian · Samuel Daulton · Finale Doshi-Velez · George Konidaris -
2017 Oral: Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes »
Taylor Killian · Samuel Daulton · Finale Doshi-Velez · George Konidaris -
2016 : BNNs for RL: A Success Story and Open Questions »
Finale Doshi-Velez -
2015 : Data Driven Phenotyping for Diseases »
Finale Doshi-Velez -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2015 Poster: Minimax Time Series Prediction »
Wouter Koolen · Alan Malek · Peter Bartlett · Yasin Abbasi Yadkori -
2014 Workshop: Large-scale reinforcement learning and Markov decision problems »
Benjamin Van Roy · Mohammad Ghavamzadeh · Peter Bartlett · Yasin Abbasi Yadkori · Ambuj Tewari -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2013 Poster: Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions »
Yasin Abbasi Yadkori · Peter Bartlett · Varun Kanade · Yevgeny Seldin · Csaba Szepesvari -
2011 Poster: Improved Algorithms for Linear Stochastic Bandits »
Yasin Abbasi Yadkori · David Pal · Csaba Szepesvari -
2011 Spotlight: Improved Algorithms for Linear Stochastic Bandits »
Yasin Abbasi Yadkori · David Pal · Csaba Szepesvari