Timezone: »
Efficient and robust algorithms for decentralized estimation in networks are essential to many distributed systems. Whereas distributed estimation of sample mean statistics has been the subject of a good deal of attention, computation of U-statistics, relying on more expensive averaging over pairs of observations, is a less investigated area. Yet, such data functionals are essential to describe global properties of a statistical population, with important examples including Area Under the Curve, empirical variance, Gini mean difference and within-cluster point scatter. This paper proposes new synchronous and asynchronous randomized gossip algorithms which simultaneously propagate data across the network and maintain local estimates of the U-statistic of interest. We establish convergence rate bounds of O(1 / t) and O(log t / t) for the synchronous and asynchronous cases respectively, where t is the number of iterations, with explicit data and network dependent terms. Beyond favorable comparisons in terms of rate analysis, numerical experiments provide empirical evidence the proposed algorithms surpasses the previously introduced approach.
Author Information
Igor Colin (Télécom ParisTech)
Aurélien Bellet (Telecom ParisTech)
Joseph Salmon (Télécom ParisTech)
Stéphan Clémençon (Telecom ParisTech)
More from the Same Authors
-
2021 : Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution »
Camille Garcin · alexis joly · Pierre Bonnet · Antoine Affouard · Jean-Christophe Lombardo · Mathias Chouet · Maximilien Servajean · Titouan Lorieul · Joseph Salmon -
2022 : Assessing Performance and Fairness Metrics in Face Recognition - Bootstrap Methods »
Jean-Rémy Conti · Stéphan Clémençon -
2017 Poster: Ranking Data with Continuous Labels through Oriented Recursive Partitions »
Stéphan Clémençon · Mastane Achab -
2016 Poster: GAP Safe Screening Rules for Sparse-Group Lasso »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2015 Poster: SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk »
Guillaume Papa · Stéphan Clémençon · Aurélien Bellet -
2015 Poster: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon -
2015 Poster: GAP Safe screening rules for sparse multi-task and multi-class models »
Eugene Ndiaye · Olivier Fercoq · Alexandre Gramfort · Joseph Salmon -
2014 Poster: Probabilistic low-rank matrix completion on finite alphabets »
Jean Lafond · Olga Klopp · Eric Moulines · Joseph Salmon -
2011 Poster: On U-processes and clustering performance »
Stéphan Clémençon -
2011 Spotlight: On U-processes and clustering performance »
Stéphan Clémençon -
2009 Poster: AUC optimization and the two-sample problem »
Stéphan Clémençon · Nicolas Vayatis · Marine Depecker