Poster
Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep Learning
Jiajun Wu · Ilker Yildirim · Joseph Lim · Bill Freeman · Josh Tenenbaum

Tue Dec 8th 07:00 -- 11:59 PM @ 210 C #8 #None

Humans demonstrate remarkable abilities to predict physical events in dynamic scenes, and to infer the physical properties of objects from static images. We propose a generative model for solving these problems of physical scene understanding from real-world videos and images. At the core of our generative model is a 3D physics engine, operating on an object-based representation of physical properties, including mass, position, 3D shape, and friction. We can infer these latent properties using relatively brief runs of MCMC, which drive simulations in the physics engine to fit key features of visual observations. We further explore directly mapping visual inputs to physical properties, inverting a part of the generative process using deep learning. We name our model Galileo, and evaluate it on a video dataset with simple yet physically rich scenarios. Results show that Galileo is able to infer the physical properties of objects and predict the outcome of a variety of physical events, with an accuracy comparable to human subjects. Our study points towards an account of human vision with generative physical knowledge at its core, and various recognition models as helpers leading to efficient inference.

Author Information

Jiajun Wu (MIT)

Jiajun Wu is a fifth-year Ph.D. student at Massachusetts Institute of Technology, advised by Professor Bill Freeman and Professor Josh Tenenbaum. His research interests lie on the intersection of computer vision, machine learning, and computational cognitive science. Before coming to MIT, he received his B.Eng. from Tsinghua University, China, advised by Professor Zhuowen Tu. He has also spent time working at research labs of Microsoft, Facebook, and Baidu.

Ilker Yildirim (MIT)
Joseph Lim (MIT)
Bill Freeman (MIT)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

More from the Same Authors