Timezone: »
This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.
Author Information
Trevor Campbell (MIT)
Julian Straub (Mit)
John Fisher III (MIT)
Jonathan How (MIT)
More from the Same Authors
-
2021 : The CPD Data Set: Personnel, Use of Force, and Complaints in the Chicago Police Department »
Thibaut Horel · Lorenzo Masoero · Raj Agrawal · Daria Roithmayr · Trevor Campbell -
2022 : Posterior Consistency for Gaussian Process Surrogate Models with Generalized Observations »
Rujian Chen · John Fisher III -
2022 Poster: Influencing Long-Term Behavior in Multiagent Reinforcement Learning »
Dong-Ki Kim · Matthew Riemer · Miao Liu · Jakob Foerster · Michael Everett · Chuangchuang Sun · Gerald Tesauro · Jonathan How -
2020 Poster: Sequential Bayesian Experimental Design with Variable Cost Structure »
Sue Zheng · David Hayden · Jason Pacheco · John Fisher III -
2020 Poster: Belief-Dependent Macro-Action Discovery in POMDPs using the Value of Information »
Genevieve Flaspohler · Nick Roy · John Fisher III -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2016 Workshop: Practical Bayesian Nonparametrics »
Nick Foti · Tamara Broderick · Trevor Campbell · Michael Hughes · Jeffrey Miller · Aaron Schein · Sinead Williamson · Yanxun Xu -
2016 Poster: Coresets for Scalable Bayesian Logistic Regression »
Jonathan Huggins · Trevor Campbell · Tamara Broderick -
2016 Poster: Improving PAC Exploration Using the Median Of Means »
Jason Pazis · Ronald Parr · Jonathan How -
2016 Poster: Edge-exchangeable graphs and sparsity »
Diana Cai · Trevor Campbell · Tamara Broderick -
2015 Poster: Probabilistic Variational Bounds for Graphical Models »
Qiang Liu · John Fisher III · Alexander Ihler -
2014 Poster: Coresets for k-Segmentation of Streaming Data »
Guy Rosman · Mikhail Volkov · Dan Feldman · John Fisher III · Daniela Rus -
2014 Poster: Parallel Sampling of HDPs using Sub-Cluster Splits »
Jason Chang · John Fisher III -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Workshop: Advances in Machine Learning for Sensorimotor Control »
Thomas Walsh · Alborz Geramifard · Marc Deisenroth · Jonathan How · Jan Peters -
2013 Poster: Parallel Sampling of DP Mixture Models using Sub-Cluster Splits »
Jason Chang · John Fisher III -
2013 Poster: Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture »
Trevor Campbell · Miao Liu · Brian Kulis · Jonathan How · Lawrence Carin -
2013 Poster: Sensor Selection in High-Dimensional Gaussian Trees with Nuisances »
Daniel S Levine · Jonathan How -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Poster: Coupling Nonparametric Mixtures via Latent Dirichlet Processes »
Dahua Lin · John Fisher III -
2010 Oral: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III -
2010 Poster: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III