Timezone: »
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies.
Author Information
Will Wei Sun (Yahoo Labs)
Zhaoran Wang (Princeton University)
Han Liu (Princeton University)
Guang Cheng (Purdue University)
More from the Same Authors
-
2020 Poster: Efficient Variational Inference for Sparse Deep Learning with Theoretical Guarantee »
Jincheng Bai · Qifan Song · Guang Cheng -
2020 Poster: Statistical Guarantees of Distributed Nearest Neighbor Classification »
Jiexin Duan · Xingye Qiao · Guang Cheng -
2020 Poster: Directional Pruning of Deep Neural Networks »
Shih-Kang Chao · Zhanyu Wang · Yue Xing · Guang Cheng -
2019 Poster: Bootstrapping Upper Confidence Bound »
Botao Hao · Yasin Abbasi Yadkori · Zheng Wen · Guang Cheng -
2019 Poster: Rates of Convergence for Large-scale Nearest Neighbor Classification »
Xingye Qiao · Jiexin Duan · Guang Cheng -
2018 Poster: Early Stopping for Nonparametric Testing »
Meimei Liu · Guang Cheng -
2018 Poster: Sketching Method for Large Scale Combinatorial Inference »
Wei Sun · Junwei Lu · Han Liu -
2018 Poster: Exponentially Weighted Imitation Learning for Batched Historical Data »
Qing Wang · Jiechao Xiong · Lei Han · peng sun · Han Liu · Tong Zhang -
2017 Poster: Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein’s Lemma »
Zhuoran Yang · Krishnakumar Balasubramanian · Zhaoran Wang · Han Liu -
2017 Poster: Parametric Simplex Method for Sparse Learning »
Haotian Pang · Han Liu · Robert J Vanderbei · Tuo Zhao -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 Poster: NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization »
Davood Hajinezhad · Mingyi Hong · Tuo Zhao · Zhaoran Wang -
2016 Poster: Agnostic Estimation for Misspecified Phase Retrieval Models »
Matey Neykov · Zhaoran Wang · Han Liu -
2016 Poster: Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes »
Chris Junchi Li · Zhaoran Wang · Han Liu -
2016 Poster: Blind Attacks on Machine Learners »
Alex Beatson · Zhaoran Wang · Han Liu -
2016 Poster: More Supervision, Less Computation: Statistical-Computational Tradeoffs in Weakly Supervised Learning »
Xinyang Yi · Zhaoran Wang · Zhuoran Yang · Constantine Caramanis · Han Liu -
2015 Poster: Optimal Linear Estimation under Unknown Nonlinear Transform »
Xinyang Yi · Zhaoran Wang · Constantine Caramanis · Han Liu -
2015 Poster: Local Smoothness in Variance Reduced Optimization »
Daniel Vainsencher · Han Liu · Tong Zhang -
2015 Poster: High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality »
Zhaoran Wang · Quanquan Gu · Yang Ning · Han Liu -
2015 Poster: Robust Portfolio Optimization »
Huitong Qiu · Fang Han · Han Liu · Brian Caffo -
2015 Poster: A Nonconvex Optimization Framework for Low Rank Matrix Estimation »
Tuo Zhao · Zhaoran Wang · Han Liu -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan L Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Poster: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Poster: Accelerated Mini-batch Randomized Block Coordinate Descent Method »
Tuo Zhao · Mo Yu · Yiming Wang · Raman Arora · Han Liu -
2014 Poster: Multivariate Regression with Calibration »
Han Liu · Lie Wang · Tuo Zhao -
2014 Poster: Sparse PCA with Oracle Property »
Quanquan Gu · Zhaoran Wang · Han Liu -
2014 Spotlight: Mode Estimation for High Dimensional Discrete Tree Graphical Models »
Chao Chen · Han Liu · Dimitris Metaxas · Tianqi Zhao -
2014 Poster: Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time »
Zhaoran Wang · Huanran Lu · Han Liu -
2013 Workshop: Modern Nonparametric Methods in Machine Learning »
Arthur Gretton · Mladen Kolar · Samory Kpotufe · John Lafferty · Han Liu · Bernhard Schölkopf · Alexander Smola · Rob Nowak · Mikhail Belkin · Lorenzo Rosasco · peter bickel · Yue Zhao -
2013 Poster: Sparse Inverse Covariance Estimation with Calibration »
Tuo Zhao · Han Liu -
2013 Poster: Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model »
Fang Han · Han Liu -
2013 Spotlight: Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model »
Fang Han · Han Liu -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: High-dimensional Nonparanormal Graph Estimation via Smooth-projected Neighborhood Pursuit »
Tuo Zhao · Kathryn Roeder · Han Liu -
2012 Poster: Exponential Concentration for Mutual Information Estimation with Application to Forests »
Han Liu · John Lafferty · Larry Wasserman