Timezone: »
In regression problems involving vector-valued outputs (or equivalently, multiple responses), it is well known that the maximum likelihood estimator (MLE), which takes noise covariance structure into account, can be significantly more accurate than the ordinary least squares (OLS) estimator. However, existing literature compares OLS and MLE in terms of their asymptotic, not finite sample, guarantees. More crucially, computing the MLE in general requires solving a non-convex optimization problem and is not known to be efficiently solvable. We provide finite sample upper and lower bounds on the estimation error of OLS and MLE, in two popular models: a) Pooled model, b) Seemingly Unrelated Regression (SUR) model. We provide precise instances where the MLE is significantly more accurate than OLS. Furthermore, for both models, we show that the output of a computationally efficient alternating minimization procedure enjoys the same performance guarantee as MLE, up to universal constants. Finally, we show that for high-dimensional settings as well, the alternating minimization procedure leads to significantly more accurate solutions than the corresponding OLS solutions but with error bound that depends only logarithmically on the data dimensionality.
Author Information
Prateek Jain (Microsoft Research)
Ambuj Tewari (University of Michigan)
More from the Same Authors
-
2021 Spotlight: Representation Learning Beyond Linear Prediction Functions »
Ziping Xu · Ambuj Tewari -
2022 : RL Boltzmann Generators for Conformer Generation in Data-Sparse Environments »
Yash Patel · Ambuj Tewari -
2022 : Probabilistically Robust PAC Learning »
Vinod Raman · Ambuj Tewari · UNIQUE SUBEDI -
2023 Poster: On the Learnability of Multilabel Ranking »
Vinod Raman · UNIQUE SUBEDI · Ambuj Tewari -
2023 Poster: On Proper Learnability between Average- and Worst-case Robustness »
Vinod Raman · UNIQUE SUBEDI · Ambuj Tewari -
2022 Poster: Adaptive Sampling for Discovery »
Ziping Xu · Eunjae Shim · Ambuj Tewari · Paul Zimmerman -
2022 Poster: Online Agnostic Multiclass Boosting »
Vinod Raman · Ambuj Tewari -
2021 Poster: Representation Learning Beyond Linear Prediction Functions »
Ziping Xu · Ambuj Tewari -
2021 Poster: Causal Bandits with Unknown Graph Structure »
Yangyi Lu · Amirhossein Meisami · Ambuj Tewari -
2020 Poster: TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search »
Tarun Gogineni · Ziping Xu · Exequiel Punzalan · Runxuan Jiang · Joshua Kammeraad · Ambuj Tewari · Paul Zimmerman -
2020 Poster: Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting »
Ziping Xu · Ambuj Tewari -
2020 Poster: On the Equivalence between Online and Private Learnability beyond Binary Classification »
Young H Jung · Baekjin Kim · Ambuj Tewari -
2020 Spotlight: On the Equivalence between Online and Private Learnability beyond Binary Classification »
Young H Jung · Baekjin Kim · Ambuj Tewari -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Provable Non-linear Inductive Matrix Completion »
Kai Zhong · Zhao Song · Prateek Jain · Inderjit Dhillon -
2019 Poster: Efficient Algorithms for Smooth Minimax Optimization »
Kiran Thekumparampil · Prateek Jain · Praneeth Netrapalli · Sewoong Oh -
2019 Poster: Generalization Bounds in the Predict-then-Optimize Framework »
Othman El Balghiti · Adam N. Elmachtoub · Paul Grigas · Ambuj Tewari -
2019 Poster: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Spotlight: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Poster: Shallow RNN: Accurate Time-series Classification on Resource Constrained Devices »
Don Dennis · Durmus Alp Emre Acar · Vikram Mandikal · Vinu Sankar Sadasivan · Venkatesh Saligrama · Harsha Vardhan Simhadri · Prateek Jain -
2019 Poster: Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems »
Young H Jung · Ambuj Tewari -
2019 Poster: On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems »
Baekjin Kim · Ambuj Tewari -
2018 Workshop: 2nd Workshop on Machine Learning on the Phone and other Consumer Devices (MLPCD 2) »
Sujith Ravi · Wei Chai · Yangqing Jia · Hrishikesh Aradhye · Prateek Jain -
2018 Poster: Active Learning for Non-Parametric Regression Using Purely Random Trees »
Jack Goetz · Ambuj Tewari · Paul Zimmerman -
2018 Poster: Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds »
Raghav Somani · Chirag Gupta · Prateek Jain · Praneeth Netrapalli -
2018 Spotlight: Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds »
Raghav Somani · Chirag Gupta · Prateek Jain · Praneeth Netrapalli -
2018 Poster: But How Does It Work in Theory? Linear SVM with Random Features »
Yitong Sun · Anna Gilbert · Ambuj Tewari -
2018 Poster: FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network »
Aditya Kusupati · Manish Singh · Kush Bhatia · Ashish Kumar · Prateek Jain · Manik Varma -
2018 Poster: Multiple Instance Learning for Efficient Sequential Data Classification on Resource-constrained Devices »
Don Dennis · Chirag Pabbaraju · Harsha Vardhan Simhadri · Prateek Jain -
2017 Poster: Action Centered Contextual Bandits »
Kristjan Greenewald · Ambuj Tewari · Susan Murphy · Predag Klasnja -
2017 Poster: Learning Mixture of Gaussians with Streaming Data »
Aditi Raghunathan · Prateek Jain · Ravishankar Krishnawamy -
2017 Poster: Online multiclass boosting »
Young H Jung · Jack Goetz · Ambuj Tewari -
2017 Poster: Consistent Robust Regression »
Kush Bhatia · Prateek Jain · Parameswaran Kamalaruban · Purushottam Kar -
2016 Workshop: Learning in High Dimensions with Structure »
Nikhil Rao · Prateek Jain · Hsiang-Fu Yu · Ming Yuan · Francis Bach -
2016 Poster: Regret Bounds for Non-decomposable Metrics with Missing Labels »
Nagarajan Natarajan · Prateek Jain -
2016 Poster: Structured Sparse Regression via Greedy Hard Thresholding »
Prateek Jain · Nikhil Rao · Inderjit Dhillon -
2016 Poster: Selective inference for group-sparse linear models »
Fan Yang · Rina Barber · Prateek Jain · John Lafferty -
2016 Poster: Mixed Linear Regression with Multiple Components »
Kai Zhong · Prateek Jain · Inderjit Dhillon -
2016 Poster: Phased Exploration with Greedy Exploitation in Stochastic Combinatorial Partial Monitoring Games »
Sougata Chaudhuri · Ambuj Tewari -
2015 Poster: Robust Regression via Hard Thresholding »
Kush Bhatia · Prateek Jain · Purushottam Kar -
2015 Poster: Sparse Local Embeddings for Extreme Multi-label Classification »
Kush Bhatia · Himanshu Jain · Purushottam Kar · Manik Varma · Prateek Jain -
2015 Poster: Predtron: A Family of Online Algorithms for General Prediction Problems »
Prateek Jain · Nagarajan Natarajan · Ambuj Tewari -
2015 Poster: Fighting Bandits with a New Kind of Smoothness »
Jacob D Abernethy · Chansoo Lee · Ambuj Tewari -
2014 Workshop: Large-scale reinforcement learning and Markov decision problems »
Benjamin Van Roy · Mohammad Ghavamzadeh · Peter Bartlett · Yasin Abbasi Yadkori · Ambuj Tewari -
2014 Poster: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Poster: Provable Tensor Factorization with Missing Data »
Prateek Jain · Sewoong Oh -
2014 Spotlight: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Poster: Provable Submodular Minimization using Wolfe's Algorithm »
Deeparnab Chakrabarty · Prateek Jain · Pravesh Kothari -
2014 Poster: Online and Stochastic Gradient Methods for Non-decomposable Loss Functions »
Purushottam Kar · Harikrishna Narasimhan · Prateek Jain -
2014 Oral: Provable Submodular Minimization using Wolfe's Algorithm »
Deeparnab Chakrabarty · Prateek Jain · Pravesh Kothari -
2014 Poster: On Iterative Hard Thresholding Methods for High-dimensional M-Estimation »
Prateek Jain · Ambuj Tewari · Purushottam Kar -
2013 Poster: Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses »
Harish G Ramaswamy · Shivani Agarwal · Ambuj Tewari -
2013 Spotlight: Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses »
Harish G Ramaswamy · Shivani Agarwal · Ambuj Tewari -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2013 Poster: Phase Retrieval using Alternating Minimization »
Praneeth Netrapalli · Prateek Jain · Sujay Sanghavi -
2013 Poster: Memory Limited, Streaming PCA »
Ioannis Mitliagkas · Constantine Caramanis · Prateek Jain -
2012 Poster: Multilabel Classification using Bayesian Compressed Sensing »
Ashish Kapoor · Raajay Viswanathan · Prateek Jain -
2012 Poster: Feature Clustering for Accelerating Parallel Coordinate Descent »
Chad Scherrer · Ambuj Tewari · Mahantesh Halappanavar · David Haglin -
2012 Poster: Supervised Learning with Similarity Functions »
Purushottam Kar · Prateek Jain -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: On the Universality of Online Mirror Descent »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2011 Poster: Online Learning: Stochastic, Constrained, and Smoothed Adversaries »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2011 Poster: Orthogonal Matching Pursuit with Replacement »
Prateek Jain · Ambuj Tewari · Inderjit Dhillon -
2011 Poster: Similarity-based Learning via Data Driven Embeddings »
Purushottam Kar · Prateek Jain -
2010 Spotlight: Guaranteed Rank Minimization via Singular Value Projection »
Prateek Jain · Raghu Meka · Inderjit Dhillon -
2010 Poster: Guaranteed Rank Minimization via Singular Value Projection »
Prateek Jain · Raghu Meka · Inderjit Dhillon -
2010 Spotlight: Inductive Regularized Learning of Kernel Functions »
Prateek Jain · Brian Kulis · Inderjit Dhillon -
2010 Oral: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Inductive Regularized Learning of Kernel Functions »
Prateek Jain · Brian Kulis · Inderjit Dhillon -
2010 Poster: Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning »
Prateek Jain · Sudheendra Vijayanarasimhan · Kristen Grauman -
2010 Poster: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Smoothness, Low Noise and Fast Rates »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2009 Poster: Matrix Completion from Power-Law Distributed Samples »
Raghu Meka · Prateek Jain · Inderjit Dhillon -
2008 Poster: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Poster: Online Metric Learning and Fast Similarity Search »
Prateek Jain · Brian Kulis · Inderjit Dhillon · Kristen Grauman -
2008 Spotlight: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Oral: Online Metric Learning and Fast Similarity Search »
Prateek Jain · Brian Kulis · Inderjit Dhillon · Kristen Grauman -
2008 Poster: On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization »
Sham M Kakade · Karthik Sridharan · Ambuj Tewari -
2007 Poster: Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs »
Ambuj Tewari · Peter Bartlett -
2006 Poster: Sample Complexity of Policy Search with Known Dynamics »
Peter Bartlett · Ambuj Tewari