Timezone: »
We propose a kernel-based method for finding matching between instances across different domains, such as multilingual documents and images with annotations. Each instance is assumed to be represented as a multiset of features, e.g., a bag-of-words representation for documents. The major difficulty in finding cross-domain relationships is that the similarity between instances in different domains cannot be directly measured. To overcome this difficulty, the proposed method embeds all the features of different domains in a shared latent space, and regards each instance as a distribution of its own features in the shared latent space. To represent the distributions efficiently and nonparametrically, we employ the framework of the kernel embeddings of distributions. The embedding is estimated so as to minimize the difference between distributions of paired instances while keeping unpaired instances apart. In our experiments, we show that the proposed method can achieve high performance on finding correspondence between multi-lingual Wikipedia articles, between documents and tags, and between images and tags.
Author Information
Yuya Yoshikawa (NAIST)
Tomoharu Iwata (NTT)
Hiroshi Sawada (NTT Service Evolution Labs.)
Takeshi Yamada (NTT Communication Science Labs.)
More from the Same Authors
-
2022 Poster: Symplectic Spectrum Gaussian Processes: Learning Hamiltonians from Noisy and Sparse Data »
Yusuke Tanaka · Tomoharu Iwata · naonori ueda -
2022 Poster: Few-shot Learning for Feature Selection with Hilbert-Schmidt Independence Criterion »
Atsutoshi Kumagai · Tomoharu Iwata · Yasutoshi Ida · Yasuhiro Fujiwara -
2022 Poster: Sharing Knowledge for Meta-learning with Feature Descriptions »
Tomoharu Iwata · Atsutoshi Kumagai -
2021 Poster: Meta-Learning for Relative Density-Ratio Estimation »
Atsutoshi Kumagai · Tomoharu Iwata · Yasuhiro Fujiwara -
2021 Poster: Loss function based second-order Jensen inequality and its application to particle variational inference »
Futoshi Futami · Tomoharu Iwata · naonori ueda · Issei Sato · Masashi Sugiyama -
2019 Poster: Transfer Anomaly Detection by Inferring Latent Domain Representations »
Atsutoshi Kumagai · Tomoharu Iwata · Yasuhiro Fujiwara -
2019 Poster: Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs »
Yusuke Tanaka · Toshiyuki Tanaka · Tomoharu Iwata · Takeshi Kurashima · Maya Okawa · Yasunori Akagi · Hiroyuki Toda -
2016 Poster: Multi-view Anomaly Detection via Robust Probabilistic Latent Variable Models »
Tomoharu Iwata · Makoto Yamada -
2014 Poster: Latent Support Measure Machines for Bag-of-Words Data Classification »
Yuya Yoshikawa · Tomoharu Iwata · Hiroshi Sawada -
2009 Poster: Modeling Social Annotation Data with Content Relevance using a Topic Model »
Tomoharu Iwata · Takeshi Yamada · Naonori Ueda