Timezone: »
Variational algorithms such as tree-reweighted belief propagation can provide deterministic bounds on the partition function, but are often loose and difficult to use in an any-time'' fashion, expending more computation for tighter bounds. On the other hand, Monte Carlo estimators such as importance sampling have excellent any-time behavior, but depend critically on the proposal distribution. We propose a simple Monte Carlo based inference method that augments convex variational bounds by adding importance sampling (IS). We argue that convex variational methods naturally provide good IS proposals that
cover" the probability of the target distribution, and reinterpret the variational optimization as designing a proposal to minimizes an upper bound on the variance of our IS estimator. This both provides an accurate estimator and enables the construction of any-time probabilistic bounds that improve quickly and directly on state of-the-art variational bounds, which provide certificates of accuracy given enough samples relative to the error in the initial bound.
Author Information
Qiang Liu (MIT)
John Fisher III (MIT)
Alexander Ihler (UC Irvine)
More from the Same Authors
-
2021 : Temporal-Difference Value Estimation via Uncertainty-Guided Soft Updates »
Litian Liang · Yaosheng Xu · Stephen McAleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox -
2022 : Posterior Consistency for Gaussian Process Surrogate Models with Generalized Observations »
Rujian Chen · John Fisher III -
2020 Poster: Sequential Bayesian Experimental Design with Variable Cost Structure »
Sue Zheng · David Hayden · Jason Pacheco · John Fisher III -
2020 Poster: Belief-Dependent Macro-Action Discovery in POMDPs using the Value of Information »
Genevieve Flaspohler · Nick Roy · John Fisher III -
2018 Poster: Lifted Weighted Mini-Bucket »
Nicholas Gallo · Alexander Ihler -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alex Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2017 Poster: Dynamic Importance Sampling for Anytime Bounds of the Partition Function »
Qi Lou · Rina Dechter · Alexander Ihler -
2016 Poster: Learning Infinite RBMs with Frank-Wolfe »
Wei Ping · Qiang Liu · Alexander Ihler -
2015 Poster: Streaming, Distributed Variational Inference for Bayesian Nonparametrics »
Trevor Campbell · Julian Straub · John Fisher III · Jonathan How -
2015 Poster: Decomposition Bounds for Marginal MAP »
Wei Ping · Qiang Liu · Alexander Ihler -
2014 Poster: Coresets for k-Segmentation of Streaming Data »
Guy Rosman · Mikhail Volkov · Dan Feldman · John Fisher III · Daniela Rus -
2014 Poster: Distributed Estimation, Information Loss and Exponential Families »
Qiang Liu · Alexander Ihler -
2014 Poster: Parallel Sampling of HDPs using Sub-Cluster Splits »
Jason Chang · John Fisher III -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: Parallel Sampling of DP Mixture Models using Sub-Cluster Splits »
Jason Chang · John Fisher III -
2013 Poster: Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? »
Qiang Liu · Alexander Ihler · Mark Steyvers -
2013 Spotlight: Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? »
Qiang Liu · Alexander Ihler · Mark Steyvers -
2013 Poster: Variational Planning for Graph-based MDPs »
Qiang Cheng · Qiang Liu · Feng Chen · Alexander Ihler -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Poster: Coupling Nonparametric Mixtures via Latent Dirichlet Processes »
Dahua Lin · John Fisher III -
2012 Poster: Variational Inference for Crowdsourcing »
Qiang Liu · Jian Peng · Alexander Ihler -
2010 Oral: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III -
2010 Poster: Construction of Dependent Dirichlet Processes based on Poisson Processes »
Dahua Lin · Eric Grimson · John Fisher III -
2009 Poster: Particle-based Variational Inference for Continuous Systems »
Alexander Ihler · Andrew Frank · Padhraic Smyth -
2006 Poster: Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models »
Alexander Ihler · Padhraic Smyth