Timezone: »
Poster
Teaching Machines to Read and Comprehend
Karl Moritz Hermann · Tomas Kocisky · Edward Grefenstette · Lasse Espeholt · Will Kay · Mustafa Suleyman · Phil Blunsom
Teaching machines to read natural language documents remains an elusive challenge. Machine reading systems can be tested on their ability to answer questions posed on the contents of documents that they have seen, but until now large scale training and test datasets have been missing for this type of evaluation. In this work we define a new methodology that resolves this bottleneck and provides large scale supervised reading comprehension data. This allows us to develop a class of attention based deep neural networks that learn to read real documents and answer complex questions with minimal prior knowledge of language structure.
Author Information
Karl Moritz Hermann (Google DeepMind)
Tomas Kocisky (Google DeepMind)
Edward Grefenstette (Google DeepMind)
Lasse Espeholt (Google DeepMind)
Will Kay (Google DeepMind)
Mustafa Suleyman (Google DeepMind)
Phil Blunsom (Google DeepMind)
More from the Same Authors
-
2020 Poster: The NetHack Learning Environment »
Heinrich Küttler · Nantas Nardelli · Alexander Miller · Roberta Raileanu · Marco Selvatici · Edward Grefenstette · Tim Rocktäschel -
2018 Poster: Learning to Navigate in Cities Without a Map »
Piotr Mirowski · Matt Grimes · Mateusz Malinowski · Karl Moritz Hermann · Keith Anderson · Denis Teplyashin · Karen Simonyan · koray kavukcuoglu · Andrew Zisserman · Raia Hadsell -
2018 Poster: Neural Arithmetic Logic Units »
Andrew Trask · Felix Hill · Scott Reed · Jack Rae · Chris Dyer · Phil Blunsom -
2016 Poster: Conditional Image Generation with PixelCNN Decoders »
Aaron van den Oord · Nal Kalchbrenner · Lasse Espeholt · koray kavukcuoglu · Oriol Vinyals · Alex Graves -
2015 Poster: Learning to Transduce with Unbounded Memory »
Edward Grefenstette · Karl Moritz Hermann · Mustafa Suleyman · Phil Blunsom