Timezone: »
Selecting the optimal subset from a large set of variables is a fundamental problem in various learning tasks such as feature selection, sparse regression, dictionary learning, etc. In this paper, we propose the POSS approach which employs evolutionary Pareto optimization to find a small-sized subset with good performance. We prove that for sparse regression, POSS is able to achieve the best-so-far theoretically guaranteed approximation performance efficiently. Particularly, for the \emph{Exponential Decay} subclass, POSS is proven to achieve an optimal solution. Empirical study verifies the theoretical results, and exhibits the superior performance of POSS to greedy and convex relaxation methods.
Author Information
Chao Qian (Nanjing University)
Yang Yu (Nanjing University)
Zhi-Hua Zhou (Nanjing University)
More from the Same Authors
-
2021 Poster: Cross-modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning »
Xiong-Hui Chen · Shengyi Jiang · Feng Xu · Zongzhang Zhang · Yang Yu -
2021 Poster: Regret Minimization Experience Replay in Off-Policy Reinforcement Learning »
Xu-Hui Liu · Zhenghai Xue · Jingcheng Pang · Shengyi Jiang · Feng Xu · Yang Yu -
2021 Poster: Adaptive Online Packing-guided Search for POMDPs »
Chenyang Wu · Guoyu Yang · Zongzhang Zhang · Yang Yu · Dong Li · Wulong Liu · Jianye Hao -
2021 Poster: Offline Model-based Adaptable Policy Learning »
Xiong-Hui Chen · Yang Yu · Qingyang Li · Fan-Ming Luo · Zhiwei Qin · Wenjie Shang · Jieping Ye -
2018 Poster: Multi-Layered Gradient Boosting Decision Trees »
Ji Feng · Yang Yu · Zhi-Hua Zhou -
2017 Poster: Improved Dynamic Regret for Non-degenerate Functions »
Lijun Zhang · Tianbao Yang · Jinfeng Yi · Rong Jin · Zhi-Hua Zhou -
2017 Poster: Learning with Feature Evolvable Streams »
Bo-Jian Hou · Lijun Zhang · Zhi-Hua Zhou -
2017 Poster: Subset Selection under Noise »
Chao Qian · Jing-Cheng Shi · Yang Yu · Ke Tang · Zhi-Hua Zhou