Timezone: »

 
Poster
Rectified Factor Networks
Djork-Arné Clevert · Andreas Mayr · Thomas Unterthiner · Sepp Hochreiter

Thu Dec 10 08:00 AM -- 12:00 PM (PST) @ 210 C #19 #None

We propose rectified factor networks (RFNs) to efficiently construct very sparse, non-linear, high-dimensional representations of the input. RFN models identify rare and small events, have a low interference between code units, have a small reconstruction error, and explain the data covariance structure. RFN learning is a generalized alternating minimization algorithm derived from the posterior regularization method which enforces non-negative and normalized posterior means. We proof convergence and correctness of the RFN learning algorithm.On benchmarks, RFNs are compared to other unsupervised methods like autoencoders, RBMs, factor analysis, ICA, and PCA. In contrast to previous sparse coding methods, RFNs yield sparser codes, capture the data's covariance structure more precisely, and have a significantly smaller reconstruction error. We test RFNs as pretraining technique of deep networks on different vision datasets, where RFNs were superior to RBMs and autoencoders. On gene expression data from two pharmaceutical drug discovery studies, RFNs detected small and rare gene modules that revealed highly relevant new biological insights which were so far missed by other unsupervised methods.RFN package for GPU/CPU is available at http://www.bioinf.jku.at/software/rfn.

Author Information

Okko Clevert (Johannes Kepler University)
Andreas Mayr (Johannes Kepler University Linz)
Tom Unterthiner (Johannes Kepler University Linz)
Sepp Hochreiter (Johannes Kepler University Linz)

Head of the LIT AI Lab and Professor of bioinformatics at the University of Linz. First to identify and analyze the vanishing gradient problem, the fundamental deep learning problem, in 1991. First author of the main paper on the now widely used LSTM RNNs. He implemented 'learning how to learn' (meta-learning) networks via LSTM RNNs and applied Deep Learning and RNNs to self-driving cars, sentiment analysis, reinforcement learning, bioinformatics, and medicine.

More from the Same Authors