Timezone: »

 
Poster
Supervised Learning for Dynamical System Learning
Ahmed Hefny · Carlton Downey · Geoffrey Gordon

Mon Dec 07 04:00 PM -- 08:59 PM (PST) @ 210 C #41

Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoffbetween computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporateprior information such as sparsity or structure. To address this problem, we presenta new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, therebyallowing users to incorporate prior knowledge via standard techniques such asL 1 regularization. Many existing spectral methods are special cases of this newframework, using linear regression as the supervised learner. We demonstrate theeffectiveness of our framework by showing examples where nonlinear regressionor lasso let us learn better state representations than plain linear regression does;the correctness of these instances follows directly from our general analysis.

Author Information

Ahmed Hefny (Carnegie Mellon University)
Carlton Downey (Carnegie Mellon UNiversity)
Geoffrey Gordon (CMU)

Dr. Gordon is an Associate Research Professor in the Department of Machine Learning at Carnegie Mellon University, and co-director of the Department's Ph. D. program. He works on multi-robot systems, statistical machine learning, game theory, and planning in probabilistic, adversarial, and general-sum domains. His previous appointments include Visiting Professor at the Stanford Computer Science Department and Principal Scientist at Burning Glass Technologies in San Diego. Dr. Gordon received his B.A. in Computer Science from Cornell University in 1991, and his Ph.D. in Computer Science from Carnegie Mellon University in 1999.

More from the Same Authors