Timezone: »
Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoffbetween computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporateprior information such as sparsity or structure. To address this problem, we presenta new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, therebyallowing users to incorporate prior knowledge via standard techniques such asL 1 regularization. Many existing spectral methods are special cases of this newframework, using linear regression as the supervised learner. We demonstrate theeffectiveness of our framework by showing examples where nonlinear regressionor lasso let us learn better state representations than plain linear regression does;the correctness of these instances follows directly from our general analysis.
Author Information
Ahmed Hefny (Carnegie Mellon University)
Carlton Downey (Carnegie Mellon UNiversity)
Geoffrey Gordon (CMU)
Dr. Gordon is an Associate Research Professor in the Department of Machine Learning at Carnegie Mellon University, and co-director of the Department's Ph. D. program. He works on multi-robot systems, statistical machine learning, game theory, and planning in probabilistic, adversarial, and general-sum domains. His previous appointments include Visiting Professor at the Stanford Computer Science Department and Principal Scientist at Burning Glass Technologies in San Diego. Dr. Gordon received his B.A. in Computer Science from Cornell University in 1991, and his Ph.D. in Computer Science from Carnegie Mellon University in 1999.
More from the Same Authors
-
2020 Poster: Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation »
Han Zhao · Jianfeng Chi · Yuan Tian · Geoffrey Gordon -
2020 Poster: Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift »
Remi Tachet des Combes · Han Zhao · Yu-Xiang Wang · Geoffrey Gordon -
2019 Poster: Learning Neural Networks with Adaptive Regularization »
Han Zhao · Yao-Hung Hubert Tsai · Russ Salakhutdinov · Geoffrey Gordon -
2019 Poster: Towards modular and programmable architecture search »
Renato Negrinho · Matthew Gormley · Geoffrey Gordon · Darshan Patil · Nghia Le · Daniel Ferreira -
2018 Poster: Learning Beam Search Policies via Imitation Learning »
Renato Negrinho · Matthew Gormley · Geoffrey Gordon -
2018 Poster: Learning and Inference in Hilbert Space with Quantum Graphical Models »
Siddarth Srinivasan · Carlton Downey · Byron Boots -
2018 Poster: Dual Policy Iteration »
Wen Sun · Geoffrey Gordon · Byron Boots · J. Bagnell -
2018 Poster: Adversarial Multiple Source Domain Adaptation »
Han Zhao · Shanghang Zhang · Guanhang Wu · José M. F. Moura · Joao P Costeira · Geoffrey Gordon -
2017 Poster: Linear Time Computation of Moments in Sum-Product Networks »
Han Zhao · Geoffrey Gordon -
2017 Poster: Predictive State Recurrent Neural Networks »
Carlton Downey · Ahmed Hefny · Byron Boots · Geoffrey Gordon · Boyue Li -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon -
2015 Poster: On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants »
Sashank J. Reddi · Ahmed Hefny · Suvrit Sra · Barnabas Poczos · Alexander Smola -
2014 Session: Oral Session 7 »
Geoffrey Gordon -
2012 Tutorial: Machine Learning for Student Learning »
Emma Brunskill · Geoffrey Gordon -
2010 Poster: Predictive State Temporal Difference Learning »
Byron Boots · Geoffrey Gordon -
2007 Oral: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon -
2007 Poster: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon -
2006 Poster: No-regret algorithms for Online Convex Programs »
Geoffrey Gordon -
2006 Talk: No-regret algorithms for Online Convex Programs »
Geoffrey Gordon -
2006 Poster: Multi-Robot Negotiation: Approximating the Set of Subgame Perfect Equilibria in General Sum Stochastic Games »
Chris D Murray · Geoffrey Gordon