Timezone: »
We study the problem of multi-party interactive function computation under differential privacy. In this setting, each party is interested in computing a function on its private bit and all the other parties' bits. The function to be computed can vary from one party to the other. Moreover, there could be a central observer who is interested in computing a separate function on all the parties' bits. Differential privacy ensures that there remains an uncertainty in any party's bit even when given the transcript of interactions and all other parties' bits. Performance at each party is measured via the accuracy of the function to be computed. We allow for an arbitrary cost metric to measure the distortion between the true and the computed function values. Our main result is the optimality of a simple non-interactive protocol: each party randomizes its bit (sufficiently) and shares the privatized version with the other parties. This optimality result is very general: it holds for all types of functions, heterogeneous privacy conditions on the parties, all types of cost metrics, and both average and worst-case (over the inputs) measures of accuracy.
Author Information
Peter Kairouz (UIUC)
Sewoong Oh (UIUC)
Pramod Viswanath (UIUC)
More from the Same Authors
-
2019 Poster: Turbo Autoencoder: Deep learning based channel codes for point-to-point communication channels »
Yihan Jiang · Hyeji Kim · Himanshu Asnani · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2018 Poster: Estimators for Multivariate Information Measures in General Probability Spaces »
Arman Rahimzamani · Himanshu Asnani · Pramod Viswanath · Sreeram Kannan -
2018 Poster: Deepcode: Feedback Codes via Deep Learning »
Hyeji Kim · Yihan Jiang · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 : New perspective from Blackwell's "comparisons of experiments" on generative adversarial networks »
Sewoong Oh -
2017 Poster: Deanonymization in the Bitcoin P2P Network »
Giulia Fanti · Pramod Viswanath -
2017 Poster: Optimal Sample Complexity of M-wise Data for Top-K Ranking »
Minje Jang · Sunghyun Kim · Changho Suh · Sewoong Oh -
2017 Poster: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Poster: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Spotlight: Estimating Mutual Information for Discrete-Continuous Mixtures »
Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2017 Spotlight: Matrix Norm Estimation from a Few Entries »
Ashish Khetan · Sewoong Oh -
2017 Poster: Discovering Potential Correlations via Hypercontractivity »
Hyeji Kim · Weihao Gao · Sreeram Kannan · Sewoong Oh · Pramod Viswanath -
2016 Poster: Breaking the Bandwidth Barrier: Geometrical Adaptive Entropy Estimation »
Weihao Gao · Sewoong Oh · Pramod Viswanath -
2016 Poster: Computational and Statistical Tradeoffs in Learning to Rank »
Ashish Khetan · Sewoong Oh -
2016 Poster: Achieving budget-optimality with adaptive schemes in crowdsourcing »
Ashish Khetan · Sewoong Oh -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Collaboratively Learning Preferences from Ordinal Data »
Sewoong Oh · Kiran Thekumparampil · Jiaming Xu -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Poster: Provable Tensor Factorization with Missing Data »
Prateek Jain · Sewoong Oh -
2014 Poster: Extremal Mechanisms for Local Differential Privacy »
Peter Kairouz · Sewoong Oh · Pramod Viswanath -
2014 Poster: Minimax-optimal Inference from Partial Rankings »
Bruce Hajek · Sewoong Oh · Jiaming Xu -
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2009 Poster: Matrix Completion from Noisy Entries »
Raghunandan Keshavan · Andrea Montanari · Sewoong Oh