Timezone: »

 
Poster
Generalization in Adaptive Data Analysis and Holdout Reuse
Cynthia Dwork · Vitaly Feldman · Moritz Hardt · Toni Pitassi · Omer Reingold · Aaron Roth

Thu Dec 10 08:00 AM -- 12:00 PM (PST) @ 210 C #53

Overfitting is the bane of data analysts, even when data are plentiful. Formal approaches to understanding this problem focus on statistical inference and generalization of individual analysis procedures. Yet the practice of data analysis is an inherently interactive and adaptive process: new analyses and hypotheses are proposed after seeing the results of previous ones, parameters are tuned on the basis of obtained results, and datasets are shared and reused. An investigation of this gap has recently been initiated by the authors in (Dwork et al., 2014), where we focused on the problem of estimating expectations of adaptively chosen functions.In this paper, we give a simple and practical method for reusing a holdout (or testing) set to validate the accuracy of hypotheses produced by a learning algorithm operating on a training set. Reusing a holdout set adaptively multiple times can easily lead to overfitting to the holdout set itself. We give an algorithm that enables the validation of a large number of adaptively chosen hypotheses, while provably avoiding overfitting. We illustrate the advantages of our algorithm over the standard use of the holdout set via a simple synthetic experiment.We also formalize and address the general problem of data reuse in adaptive data analysis. We show how the differential-privacy based approach in (Dwork et al., 2014) is applicable much more broadly to adaptive data analysis. We then show that a simple approach based on description length can also be used to give guarantees of statistical validity in adaptive settings. Finally, we demonstrate that these incomparable approaches can be unified via the notion of approximate max-information that we introduce. This, in particular, allows the preservation of statistical validity guarantees even when an analyst adaptively composes algorithms which have guarantees based on either of the two approaches.

Author Information

Cynthia Dwork (Microsoft Research)

Cynthia Dwork, Distinguished Scientist at Microsoft Research, is renowned for placing privacy-preserving data analysis on a mathematically rigorous foundation. A cornerstone of this work is differential privacy, a strong privacy guarantee frequently permitting highly accurate data analysis. Dr. Dwork has also made seminal contributions in cryptography and distributed computing, and is a recipient of the Edsger W. Dijkstra Prize, recognizing some of her earliest work establishing the pillars on which every fault-tolerant system has been built for decades. She is a member of the National Academy of Sciences and the National Academy of Engineering, and a Fellow of the American Academy of Arts and Sciences.

Vitaly Feldman (IBM Research - Almaden)
Moritz Hardt (Google)
Toni Pitassi (University of Toronto)
Omer Reingold (Samsung Research)
Aaron Roth (University of Pennsylvania)

More from the Same Authors