Timezone: »

Local Causal Discovery of Direct Causes and Effects
Tian Gao · Qiang Ji

Thu Dec 10 08:00 AM -- 12:00 PM (PST) @ 210 C #30

We focus on the discovery and identification of direct causes and effects of a target variable in a causal network. State-of-the-art algorithms generally need to find the global causal structures in the form of complete partial directed acyclic graphs in order to identify the direct causes and effects of a target variable. While these algorithms are effective, it is often unnecessary and wasteful to find the global structures when we are only interested in one target variable (such as class labels). We propose a new local causal discovery algorithm, called Causal Markov Blanket (CMB), to identify the direct causes and effects of a target variable based on Markov Blanket Discovery. CMB is designed to conduct causal discovery among multiple variables, but focuses only on finding causal relationships between a specific target variable and other variables. Under standard assumptions, we show both theoretically and experimentally that the proposed local causal discovery algorithm can obtain the comparable identification accuracy as global methods but significantly improve their efficiency, often by more than one order of magnitude.

Author Information

Tian Gao (Rensselaer Polytechnic Institute)
Qiang Ji (Rensselaer Polytechnic Institute)

More from the Same Authors