Timezone: »

Revenue Optimization against Strategic Buyers
Mehryar Mohri · Andres Munoz

Thu Dec 10 08:00 AM -- 12:00 PM (PST) @ 210 C #91
We present a revenue optimization algorithm for posted-price auctions when facing a buyer with random valuations who seeks to optimize his $\gamma$-discounted surplus. To analyze this problem, we introduce the notion of epsilon-strategic buyer, a more natural notion of strategic behavior than what has been used in the past. We improve upon the previous state-of-the-art and achieve an optimal regret bound in $O\Big( \log T + \frac{1}{\log(1/\gamma)} \Big)$ when the seller can offer prices from a finite set $\cP$ and provide a regret bound in $\widetilde O \Big(\sqrt{T} + \frac{T^{1/4}}{\log(1/\gamma)} \Big)$ when the buyer is offered prices from the interval $[0, 1]$.

Author Information

Mehryar Mohri (Courant Institute and Google)

Mehryar Mohri is a Professor of Computer Science and Mathematics at the Courant Institute of Mathematical Sciences and a Research Consultant at Google. Prior to these positions, he spent about ten years at AT&T Bell Labs, later AT&T Labs-Research, where he served for several years as a Department Head and a Technology Leader. His research interests cover a number of different areas: primarily machine learning, algorithms and theory, automata theory, speech processing, natural language processing, and also computational biology. His research in learning theory and algorithms has been used in a variety of applications. His work on automata theory and algorithms has served as the foundation for several applications in language processing, with several of his algorithms used in virtually all spoken-dialog and speech recognitions systems used in the United States. He has co-authored several software libraries widely used in research and academic labs. He is also co-author of the machine learning textbook Foundations of Machine Learning used in graduate courses on machine learning in several universities and corporate research laboratories.

Andres Munoz (Google)

More from the Same Authors