Timezone: »
Deep learning presents notorious computational challenges. These challenges include, but are not limited to, the non-convexity of learning objectives and estimating the quantities needed for optimization algorithms, such as gradients. While we do not address the non-convexity, we present an optimization solution that ex- ploits the so far unused “geometry” in the objective function in order to best make use of the estimated gradients. Previous work attempted similar goals with preconditioned methods in the Euclidean space, such as L-BFGS, RMSprop, and ADA-grad. In stark contrast, our approach combines a non-Euclidean gradient method with preconditioning. We provide evidence that this combination more accurately captures the geometry of the objective function compared to prior work. We theoretically formalize our arguments and derive novel preconditioned non-Euclidean algorithms. The results are promising in both computational time and quality when applied to Restricted Boltzmann Machines, Feedforward Neural Nets, and Convolutional Neural Nets.
Author Information
David Carlson (Duke University)
Edo Collins
Ya-Ping Hsieh (EPFL)
Lawrence Carin (Duke University)
Volkan Cevher (EPFL)
More from the Same Authors
-
2020 Poster: GAN Memory with No Forgetting »
Yulai Cong · Miaoyun Zhao · Jianqiao Li · Sijia Wang · Lawrence Carin -
2020 Poster: Reconsidering Generative Objectives For Counterfactual Reasoning »
Danni Lu · Chenyang Tao · Junya Chen · Fan Li · Feng Guo · Lawrence Carin -
2020 Poster: AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning »
Hao Zhang · Yuan Li · Zhijie Deng · Xiaodan Liang · Lawrence Carin · Eric Xing -
2020 Poster: Perturbing Across the Feature Hierarchy to Improve Standard and Strict Blackbox Attack Transferability »
Nathan Inkawhich · Kevin J Liang · Binghui Wang · Matthew Inkawhich · Lawrence Carin · Yiran Chen -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2020 Poster: Calibrating CNNs for Lifelong Learning »
Pravendra Singh · Vinay Kumar Verma · Pratik Mazumder · Lawrence Carin · Piyush Rai -
2020 Poster: Robust Reinforcement Learning via Adversarial training with Langevin Dynamics »
Parameswaran Kamalaruban · Yu-Ting Huang · Ya-Ping Hsieh · Paul Rolland · Cheng Shi · Volkan Cevher -
2019 Poster: An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints »
Mehmet Fatih Sahin · Armin eftekhari · Ahmet Alacaoglu · Fabian Latorre · Volkan Cevher -
2019 Poster: Improving Textual Network Learning with Variational Homophilic Embeddings »
Wenlin Wang · Chenyang Tao · Zhe Gan · Guoyin Wang · Liqun Chen · Xinyuan Zhang · Ruiyi Zhang · Qian Yang · Ricardo Henao · Lawrence Carin -
2019 Poster: Ouroboros: On Accelerating Training of Transformer-Based Language Models »
Qian Yang · Zhouyuan Huo · Wenlin Wang · Lawrence Carin -
2019 Poster: Stochastic Frank-Wolfe for Composite Convex Minimization »
Francesco Locatello · Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Poster: Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching »
Hongteng Xu · Dixin Luo · Lawrence Carin -
2019 Poster: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Poster: Fast and Provable ADMM for Learning with Generative Priors »
Fabian Latorre · Armin eftekhari · Volkan Cevher -
2019 Spotlight: UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization »
Ali Kavis · Kfir Y. Levy · Francis Bach · Volkan Cevher -
2019 Spotlight: Fast and Provable ADMM for Learning with Generative Priors »
Fabian Latorre · Armin eftekhari · Volkan Cevher -
2019 Poster: Kernel-Based Approaches for Sequence Modeling: Connections to Neural Methods »
Kevin J Liang · Guoyin Wang · Yitong Li · Ricardo Henao · Lawrence Carin -
2019 Poster: Certified Adversarial Robustness with Additive Noise »
Bai Li · Changyou Chen · Wenlin Wang · Lawrence Carin -
2019 Poster: On Fenchel Mini-Max Learning »
Chenyang Tao · Liqun Chen · Shuyang Dai · Junya Chen · Ke Bai · Dong Wang · Jianfeng Feng · Wenlian Lu · Georgiy Bobashev · Lawrence Carin -
2018 Poster: Online Adaptive Methods, Universality and Acceleration »
Kfir Y. Levy · Alp Yurtsever · Volkan Cevher -
2018 Poster: Mirrored Langevin Dynamics »
Ya-Ping Hsieh · Ali Kavis · Paul Rolland · Volkan Cevher -
2018 Spotlight: Mirrored Langevin Dynamics »
Ya-Ping Hsieh · Ali Kavis · Paul Rolland · Volkan Cevher -
2018 Poster: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2018 Spotlight: Adversarially Robust Optimization with Gaussian Processes »
Ilija Bogunovic · Jonathan Scarlett · Stefanie Jegelka · Volkan Cevher -
2018 Poster: Adversarial Text Generation via Feature-Mover's Distance »
Liqun Chen · Shuyang Dai · Chenyang Tao · Haichao Zhang · Zhe Gan · Dinghan Shen · Yizhe Zhang · Guoyin Wang · Dinghan Shen · Lawrence Carin -
2018 Poster: Distilled Wasserstein Learning for Word Embedding and Topic Modeling »
Hongteng Xu · Wenlin Wang · Wei Liu · Lawrence Carin -
2018 Poster: Extracting Relationships by Multi-Domain Matching »
Yitong Li · michael Murias · geraldine Dawson · David Carlson -
2018 Poster: Diffusion Maps for Textual Network Embedding »
Xinyuan Zhang · Yitong Li · Dinghan Shen · Lawrence Carin -
2018 Spotlight: Diffusion Maps for Textual Network Embedding »
Xinyuan Zhang · Yitong Li · Dinghan Shen · Lawrence Carin -
2017 Spotlight: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach »
Slobodan Mitrovic · Ilija Bogunovic · Ashkan Norouzi-Fard · Jakub M Tarnawski · Volkan Cevher -
2017 Poster: Targeting EEG/LFP Synchrony with Neural Nets »
Yitong Li · michael Murias · samantha Major · geraldine Dawson · Kafui Dzirasa · Lawrence Carin · David Carlson -
2017 Poster: Triangle Generative Adversarial Networks »
Zhe Gan · Liqun Chen · Weiyao Wang · Yuchen Pu · Yizhe Zhang · Hao Liu · Chunyuan Li · Lawrence Carin -
2017 Poster: ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching »
Chunyuan Li · Hao Liu · Changyou Chen · Yuchen Pu · Liqun Chen · Ricardo Henao · Lawrence Carin -
2017 Poster: Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data »
Joel A Tropp · Alp Yurtsever · Madeleine Udell · Volkan Cevher -
2017 Poster: An inner-loop free solution to inverse problems using deep neural networks »
Kai Fan · Qi Wei · Lawrence Carin · Katherine Heller -
2017 Poster: VAE Learning via Stein Variational Gradient Descent »
Yuchen Pu · Zhe Gan · Ricardo Henao · Chunyuan Li · Shaobo Han · Lawrence Carin -
2017 Poster: Phase Transitions in the Pooled Data Problem »
Jonathan Scarlett · Volkan Cevher -
2017 Poster: YASS: Yet Another Spike Sorter »
Jin Hyung Lee · David Carlson · Hooshmand Shokri Razaghi · Weichi Yao · Georges A Goetz · Espen Hagen · Eleanor Batty · E.J. Chichilnisky · Gaute T. Einevoll · Liam Paninski -
2017 Poster: Deconvolutional Paragraph Representation Learning »
Yizhe Zhang · Dinghan Shen · Guoyin Wang · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Adversarial Symmetric Variational Autoencoder »
Yuchen Pu · Weiyao Wang · Ricardo Henao · Liqun Chen · Zhe Gan · Chunyuan Li · Lawrence Carin -
2017 Poster: A Probabilistic Framework for Nonlinearities in Stochastic Neural Networks »
Qinliang Su · xuejun Liao · Lawrence Carin -
2017 Poster: Scalable Model Selection for Belief Networks »
Zhao Song · Yusuke Muraoka · Ryohei Fujimaki · Lawrence Carin -
2017 Poster: Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization »
Ahmet Alacaoglu · Quoc Tran Dinh · Olivier Fercoq · Volkan Cevher -
2017 Poster: Cross-Spectral Factor Analysis »
Neil Gallagher · Kyle Ulrich · Austin Talbot · Kafui Dzirasa · Lawrence Carin · David Carlson -
2016 Poster: Towards Unifying Hamiltonian Monte Carlo and Slice Sampling »
Yizhe Zhang · Xiangyu Wang · Changyou Chen · Ricardo Henao · Kai Fan · Lawrence Carin -
2016 Poster: An Efficient Streaming Algorithm for the Submodular Cover Problem »
Ashkan Norouzi-Fard · Abbas Bazzi · Ilija Bogunovic · Marwa El Halabi · Ya-Ping Hsieh · Volkan Cevher -
2016 Poster: Variational Autoencoder for Deep Learning of Images, Labels and Captions »
Yunchen Pu · Zhe Gan · Ricardo Henao · Xin Yuan · Chunyuan Li · Andrew Stevens · Lawrence Carin -
2016 Poster: Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation »
Ilija Bogunovic · Jonathan Scarlett · Andreas Krause · Volkan Cevher -
2016 Poster: Linear Feature Encoding for Reinforcement Learning »
Zhao Song · Ronald Parr · Xuejun Liao · Lawrence Carin -
2016 Poster: Stochastic Three-Composite Convex Minimization »
Alp Yurtsever · Bang Cong Vu · Volkan Cevher -
2016 Poster: Stochastic Gradient MCMC with Stale Gradients »
Changyou Chen · Nan Ding · Chunyuan Li · Yizhe Zhang · Lawrence Carin -
2015 Poster: GP Kernels for Cross-Spectrum Analysis »
Kyle R Ulrich · David Carlson · Kafui Dzirasa · Lawrence Carin -
2015 Poster: Deep Poisson Factor Modeling »
Ricardo Henao · Zhe Gan · James Lu · Lawrence Carin -
2015 Poster: A Universal Primal-Dual Convex Optimization Framework »
Alp Yurtsever · Quoc Tran Dinh · Volkan Cevher -
2015 Poster: Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings »
Piyush Rai · Changwei Hu · Ricardo Henao · Lawrence Carin -
2015 Spotlight: Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings »
Piyush Rai · Changwei Hu · Ricardo Henao · Lawrence Carin -
2015 Poster: On the Convergence of Stochastic Gradient MCMC Algorithms with High-Order Integrators »
Changyou Chen · Nan Ding · Lawrence Carin -
2015 Poster: Deep Temporal Sigmoid Belief Networks for Sequence Modeling »
Zhe Gan · Chunyuan Li · Ricardo Henao · David Carlson · Lawrence Carin -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher -
2014 Poster: Analysis of Brain States from Multi-Region LFP Time-Series »
Kyle R Ulrich · David Carlson · Wenzhao Lian · Jana S Borg · Kafui Dzirasa · Lawrence Carin -
2014 Poster: Bayesian Nonlinear Support Vector Machines and Discriminative Factor Modeling »
Ricardo Henao · Xin Yuan · Lawrence Carin -
2014 Poster: Constrained convex minimization via model-based excessive gap »
Quoc Tran-Dinh · Volkan Cevher -
2014 Poster: Compressive Sensing of Signals from a GMM with Sparse Precision Matrices »
Jianbo Yang · Xuejun Liao · Minhua Chen · Lawrence Carin -
2014 Poster: On the relations of LFPs & Neural Spike Trains »
David Carlson · Jana Schaich Borg · Kafui Dzirasa · Lawrence Carin -
2014 Poster: Dynamic Rank Factor Model for Text Streams »
Shaobo Han · Lin Du · Esther Salazar · Lawrence Carin -
2014 Poster: Time--Data Tradeoffs by Aggressive Smoothing »
John J Bruer · Joel A Tropp · Volkan Cevher · Stephen Becker -
2013 Poster: High-Dimensional Gaussian Process Bandits »
Josip Djolonga · Andreas Krause · Volkan Cevher -
2013 Poster: Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture »
Trevor Campbell · Miao Liu · Brian Kulis · Jonathan How · Lawrence Carin -
2013 Poster: Designed Measurements for Vector Count Data »
Liming Wang · David Carlson · Miguel Rodrigues · David Wilcox · Robert Calderbank · Lawrence Carin -
2013 Poster: Integrated Non-Factorized Variational Inference »
Shaobo Han · Xuejun Liao · Lawrence Carin -
2013 Poster: Real-Time Inference for a Gamma Process Model of Neural Spiking »
David Carlson · Vinayak Rao · Joshua T Vogelstein · Lawrence Carin -
2012 Workshop: Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty »
Jonathan How · Lawrence Carin · John Fisher III · Michael Jordan · Alborz Geramifard -
2012 Poster: Joint Modeling of a Matrix with Associated Text via Latent Binary Features »
XianXing Zhang · Lawrence Carin -
2012 Poster: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2012 Spotlight: Augment-and-Conquer Negative Binomial Processes »
Mingyuan Zhou · Lawrence Carin -
2012 Poster: Active Learning of Multi-Index Function Models »
Hemant Tyagi · Volkan Cevher -
2011 Poster: On the Analysis of Multi-Channel Neural Spike Data »
Bo Chen · David Carlson · Lawrence Carin -
2011 Poster: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Spotlight: The Kernel Beta Process »
Lu Ren · Yingjian Wang · David B Dunson · Lawrence Carin -
2011 Poster: Hierarchical Topic Modeling for Analysis of Time-Evolving Personal Choices »
XianXing Zhang · David B Dunson · Lawrence Carin -
2010 Poster: Joint Analysis of Time-Evolving Binary Matrices and Associated Documents »
Eric X Wang · Dehong Liu · Jorge G Silva · David B Dunson · Lawrence Carin -
2009 Workshop: Manifolds, sparsity, and structured models: When can low-dimensional geometry really help? »
Richard Baraniuk · Volkan Cevher · Mark A Davenport · Piotr Indyk · Bruno Olshausen · Michael B Wakin -
2009 Poster: A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation »
Lan Du · Lu Ren · David B Dunson · Lawrence Carin -
2009 Poster: Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations »
Mingyuan Zhou · Haojun Chen · John Paisley · Lu Ren · Guillermo Sapiro · Lawrence Carin -
2009 Poster: Learning to Explore and Exploit in POMDPs »
Chenghui Cai · Xuejun Liao · Lawrence Carin -
2009 Poster: Learning with Compressible Priors »
Volkan Cevher -
2008 Workshop: Cost Sensitive Learning »
Balaji R Krishnapuram · Shipeng Yu · Oksana Yakhnenko · R. Bharat Rao · Lawrence Carin -
2008 Poster: Sparse Signal Recovery Using Markov Random Fields »
Volkan Cevher · Marco F Duarte · Chinmay Hegde · Richard Baraniuk -
2008 Spotlight: Sparse Signal Recovery Using Markov Random Fields »
Volkan Cevher · Marco F Duarte · Chinmay Hegde · Richard Baraniuk -
2007 Poster: Semi-Supervised Multitask Learning »
Qiuhua Liu · Xuejun Liao · Lawrence Carin -
2007 Spotlight: Semi-Supervised Multitask Learning »
Qiuhua Liu · Xuejun Liao · Lawrence Carin