Timezone: »

 
Poster
Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric Image Segmentation
Marijn F Stollenga · Wonmin Byeon · Marcus Liwicki · Jürgen Schmidhuber

Mon Dec 07 04:00 PM -- 08:59 PM (PST) @ 210 C #10

Convolutional Neural Networks (CNNs) can be shifted across 2D images or 3D videos to segment them. They have a fixed input size and typically perceive only small local contexts of the pixels to be classified as foreground or background. In contrast, Multi-Dimensional Recurrent NNs (MD-RNNs) can perceive the entire spatio-temporal context of each pixel in a few sweeps through all pixels, especially when the RNN is a Long Short-Term Memory (LSTM). Despite these theoretical advantages, however, unlike CNNs, previous MD-LSTM variants were hard to parallelise on GPUs. Here we re-arrange the traditional cuboid order of computations in MD-LSTM in pyramidal fashion. The resulting PyraMiD-LSTM is easy to parallelise, especially for 3D data such as stacks of brain slice images. PyraMiD-LSTM achieved best known pixel-wise brain image segmentation results on MRBrainS13 (and competitive results on EM-ISBI12).

Author Information

Marijn F Stollenga (IDSIA)
Wonmin Byeon (IDSIA)
Marcus Liwicki (TU Kaiserslautern)
Jürgen Schmidhuber (IDSIA)

Since age 15 or so, the main goal of professor Jürgen Schmidhuber has been to build a self-improving Artificial Intelligence (AI) smarter than himself, then retire. His lab's Deep Learning Neural Networks based on ideas published in the "Annus Mirabilis" 1990-1991 have revolutionised machine learning and AI. By the mid 2010s, they were on 3 billion devices, and used billions of times per day through users of the world's most valuable public companies, e.g., for greatly improved (CTC-LSTM-based) speech recognition on all Android phones, greatly improved machine translation through Google Translate and Facebook (over 4 billion LSTM-based translations per day), Apple's Siri and Quicktype on all iPhones, the answers of Amazon's Alexa, and numerous other applications. In 2011, his team was the first to win official computer vision contests through deep neural nets, with superhuman performance. In 2012, they had the first deep NN to win a medical imaging contest (on cancer detection). All of this attracted enormous interest from industry. His research group also established the fields of mathematically rigorous universal AI and recursive self-improvement in metalearning machines that learn to learn (since 1987). In 1990, he introduced unsupervised adversarial neural networks that fight each other in a minimax game to achieve artificial curiosity (GANs are a special case). In 1991, he introduced very deep learning through unsupervised pre-training, and neural fast weight programmers formally equivalent to what's now called linear Transformers. His formal theory of creativity & curiosity & fun explains art, science, music, and humor. He also generalized algorithmic information theory and the many-worlds theory of physics, and introduced the concept of Low-Complexity Art, the information age's extreme form of minimal art. He is recipient of numerous awards, author of over 350 peer-reviewed papers, and Chief Scientist of the company NNAISENSE, which aims at building the first practical general purpose AI. He is a frequent keynote speaker, and advising various governments on AI strategies.

More from the Same Authors