Timezone: »

 
Poster
Nearly Optimal Private LASSO
Kunal Talwar · Abhradeep Guha Thakurta · Li Zhang

Mon Dec 07 04:00 PM -- 08:59 PM (PST) @ 210 C #97
We present a nearly optimal differentially private version of the well known LASSO estimator. Our algorithm provides privacy protection with respect to each training data item. The excess risk of our algorithm, compared to the non-private version, is $\widetilde{O}(1/n^{2/3})$, assuming all the input data has bounded $\ell_\infty$ norm. This is the first differentially private algorithm that achieves such a bound without the polynomial dependence on $p$ under no addition assumption on the design matrix. In addition, we show that this error bound is nearly optimal amongst all differentially private algorithms.

Author Information

Kunal Talwar (Google)
Abhradeep Guha Thakurta (APPLE Inc)
Li Zhang (Google)

More from the Same Authors