Timezone: »
We present two approaches to use unlabeled data to improve Sequence Learningwith recurrent networks. The first approach is to predict what comes next in asequence, which is a language model in NLP. The second approach is to use asequence autoencoder, which reads the input sequence into a vector and predictsthe input sequence again. These two algorithms can be used as a “pretraining”algorithm for a later supervised sequence learning algorithm. In other words, theparameters obtained from the pretraining step can then be used as a starting pointfor other supervised training models. In our experiments, we find that long shortterm memory recurrent networks after pretrained with the two approaches becomemore stable to train and generalize better. With pretraining, we were able toachieve strong performance in many classification tasks, such as text classificationwith IMDB, DBpedia or image recognition in CIFAR-10.
Author Information
Andrew Dai (Google Inc)
Quoc V Le (Google)
More from the Same Authors
-
2021 : BEDS-Bench: Behavior of EHR-models under Distributional Shift - A Benchmark »
Anand Avati · Martin Seneviratne · Yuan Xue · Zhen Xu · Balaji Lakshminarayanan · Andrew Dai -
2023 Poster: Symbolic Discovery of Optimization Algorithms »
Xiangning Chen · Chen Liang · Da Huang · Esteban Real · Kaiyuan Wang · Hieu Pham · Xuanyi Dong · Thang Luong · Cho-Jui Hsieh · Yifeng Lu · Quoc V Le -
2023 Poster: DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining »
Sang Michael Xie · Hieu Pham · Xuanyi Dong · Nan Du · Hanxiao Liu · Yifeng Lu · Percy Liang · Quoc V Le · Tengyu Ma · Adams Wei Yu -
2023 Poster: Order Matters in the Presence of Dataset Imbalance for Multilingual Learning »
Dami Choi · Derrick Xin · Justin Gilmer · Hamid Dadkhahi · Ankush Garg · Orhan Firat · Chih-Kuan Yeh · Andrew Dai · Behrooz Ghorbani -
2022 Poster: Mixture-of-Experts with Expert Choice Routing »
Yanqi Zhou · Tao Lei · Hanxiao Liu · Nan Du · Yanping Huang · Vincent Zhao · Andrew Dai · zhifeng Chen · Quoc V Le · James Laudon -
2022 Poster: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models »
Jason Wei · Xuezhi Wang · Dale Schuurmans · Maarten Bosma · brian ichter · Fei Xia · Ed Chi · Quoc V Le · Denny Zhou -
2022 Poster: TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets »
Chengrun Yang · Gabriel Bender · Hanxiao Liu · Pieter-Jan Kindermans · Madeleine Udell · Yifeng Lu · Quoc V Le · Da Huang -
2021 Poster: CoAtNet: Marrying Convolution and Attention for All Data Sizes »
Zihang Dai · Hanxiao Liu · Quoc V Le · Mingxing Tan -
2021 Poster: Searching for Efficient Transformers for Language Modeling »
David So · Wojciech Mańke · Hanxiao Liu · Zihang Dai · Noam Shazeer · Quoc V Le -
2021 Poster: Pay Attention to MLPs »
Hanxiao Liu · Zihang Dai · David So · Quoc V Le -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 Poster: Evolving Normalization-Activation Layers »
Hanxiao Liu · Andy Brock · Karen Simonyan · Quoc V Le -
2020 Spotlight: Evolving Normalization-Activation Layers »
Hanxiao Liu · Andy Brock · Karen Simonyan · Quoc V Le -
2020 Poster: PyGlove: Symbolic Programming for Automated Machine Learning »
Daiyi Peng · Xuanyi Dong · Esteban Real · Mingxing Tan · Yifeng Lu · Gabriel Bender · Hanxiao Liu · Adam Kraft · Chen Liang · Quoc V Le -
2020 Poster: RandAugment: Practical Automated Data Augmentation with a Reduced Search Space »
Ekin Dogus Cubuk · Barret Zoph · Jonathon Shlens · Quoc V Le -
2020 Oral: PyGlove: Symbolic Programming for Automated Machine Learning »
Daiyi Peng · Xuanyi Dong · Esteban Real · Mingxing Tan · Yifeng Lu · Gabriel Bender · Hanxiao Liu · Adam Kraft · Chen Liang · Quoc V Le -
2020 Poster: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2020 Oral: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2020 Poster: Unsupervised Data Augmentation for Consistency Training »
Qizhe Xie · Zihang Dai · Eduard Hovy · Thang Luong · Quoc V Le -
2020 Poster: Learning to Select Best Forecast Tasks for Clinical Outcome Prediction »
Yuan Xue · Nan Du · Anne Mottram · Martin Seneviratne · Andrew Dai -
2020 Poster: Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing »
Zihang Dai · Guokun Lai · Yiming Yang · Quoc V Le -
2019 Poster: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Oral: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Poster: CondConv: Conditionally Parameterized Convolutions for Efficient Inference »
Brandon Yang · Gabriel Bender · Quoc V Le · Jiquan Ngiam -
2019 Poster: Mixtape: Breaking the Softmax Bottleneck Efficiently »
Zhilin Yang · Thang Luong · Russ Salakhutdinov · Quoc V Le -
2019 Poster: Saccader: Improving Accuracy of Hard Attention Models for Vision »
Gamaleldin Elsayed · Simon Kornblith · Quoc V Le -
2019 Poster: GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism »
Yanping Huang · Youlong Cheng · Ankur Bapna · Orhan Firat · Dehao Chen · Mia Chen · HyoukJoong Lee · Jiquan Ngiam · Quoc V Le · Yonghui Wu · zhifeng Chen -
2019 Poster: High Fidelity Video Prediction with Large Stochastic Recurrent Neural Networks »
Ruben Villegas · Arkanath Pathak · Harini Kannan · Dumitru Erhan · Quoc V Le · Honglak Lee -
2018 Poster: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2018 Spotlight: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2018 Poster: DropBlock: A regularization method for convolutional networks »
Golnaz Ghiasi · Tsung-Yi Lin · Quoc V Le -
2017 Symposium: Metalearning »
Risto Miikkulainen · Quoc V Le · Kenneth Stanley · Chrisantha Fernando -
2016 Poster: An Online Sequence-to-Sequence Model Using Partial Conditioning »
Navdeep Jaitly · Quoc V Le · Oriol Vinyals · Ilya Sutskever · David Sussillo · Samy Bengio -
2014 Poster: Sequence to Sequence Learning with Neural Networks »
Ilya Sutskever · Oriol Vinyals · Quoc V Le -
2014 Oral: Sequence to Sequence Learning with Neural Networks »
Ilya Sutskever · Oriol Vinyals · Quoc V Le -
2013 Workshop: Randomized Methods for Machine Learning »
David Lopez-Paz · Quoc V Le · Alexander Smola