Timezone: »

 
Poster
Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric
Vivien Seguy · Marco Cuturi

Mon Dec 07 04:00 PM -- 08:59 PM (PST) @ 210 C #48 #None
We consider in this work the space of probability measures $P(X)$ on a Hilbert space $X$ endowed with the 2-Wasserstein metric. Given a finite family of probability measures in $P(X)$, we propose an iterative approach to compute geodesic principal components that summarize efficiently that dataset. The 2-Wasserstein metric provides $P(X)$ with a Riemannian structure and associated concepts (Fr\'echet mean, geodesics, tangent vectors) which prove crucial to follow the intuitive approach laid out by standard principal component analysis. To make our approach feasible, we propose to use an alternative parameterization of geodesics proposed by \citet[\S 9.2]{ambrosio2006gradient}. These \textit{generalized} geodesics are parameterized with two velocity fields defined on the support of the Wasserstein mean of the data, each pointing towards an ending point of the generalized geodesic. The resulting optimization problem of finding principal components is solved by adapting a projected gradient descend method. Experiment results show the ability of the computed principal components to capture axes of variability on histograms and probability measures data.

Author Information

Vivien Seguy (Kyoto University)
Marco Cuturi (Kyoto University)

Marco Cuturi is a research scientist at Google AI, Brain team in Paris. He received his Ph.D. in 11/2005 from the Ecole des Mines de Paris in applied mathematics. Before that he graduated from National School of Statistics (ENSAE) with a master degree (MVA) from ENS Cachan. He worked as a post-doctoral researcher at the Institute of Statistical Mathematics, Tokyo, between 11/2005 and 3/2007 and then in the financial industry between 4/2007 and 9/2008. After working at the ORFE department of Princeton University as a lecturer between 2/2009 and 8/2010, he was at the Graduate School of Informatics of Kyoto University between 9/2010 and 9/2016 as a tenured associate professor. He joined ENSAE in 9/2016 as a professor, where he is now working part-time. His main employment is now with Google AI (Brain team in Paris) since 10/2018, as a research scientist working on fundamental aspects of machine learning.

More from the Same Authors