Poster
From random walks to distances on unweighted graphs
Tatsunori Hashimoto · Yi Sun · Tommi Jaakkola

Thu Dec 10th 11:00 AM -- 03:00 PM @ 210 C #74 #None

Large unweighted directed graphs are commonly used to capture relations between entities. A fundamental problem in the analysis of such networks is to properly define the similarity or dissimilarity between any two vertices. Despite the significance of this problem, statistical characterization of the proposed metrics has been limited.We introduce and develop a class of techniques for analyzing random walks on graphs using stochastic calculus. Using these techniques we generalize results on the degeneracy of hitting times and analyze a metric based on the Laplace transformed hitting time (LTHT). The metric serves as a natural, provably well-behaved alternative to the expected hitting time. We establish a general correspondence between hitting times of the Brownian motion and analogous hitting times on the graph. We show that the LTHT is consistent with respect to the underlying metric of a geometric graph, preserves clustering tendency, and remains robust against random addition of non-geometric edges. Tests on simulated and real-world data show that the LTHT matches theoretical predictions and outperforms alternatives.

Author Information

Tatsunori Hashimoto (MIT CSAIL)
Yi Sun (MIT Mathematics)
Tommi Jaakkola (MIT)

Tommi Jaakkola is a professor of Electrical Engineering and Computer Science at MIT. He received an M.Sc. degree in theoretical physics from Helsinki University of Technology, and Ph.D. from MIT in computational neuroscience. Following a Sloan postdoctoral fellowship in computational molecular biology, he joined the MIT faculty in 1998. His research interests include statistical inference, graphical models, and large scale modern estimation problems with predominantly incomplete data.

More from the Same Authors