Timezone: »

 
Poster
Automatic Variational Inference in Stan
Alp Kucukelbir · Rajesh Ranganath · Andrew Gelman · David Blei

Tue Dec 08 04:00 PM -- 08:59 PM (PST) @ 210 C #34 #None

Variational inference is a scalable technique for approximate Bayesian inference. Deriving variational inference algorithms requires tedious model-specific calculations; this makes it difficult for non-experts to use. We propose an automatic variational inference algorithm, automatic differentiation variational inference (ADVI); we implement it in Stan (code available), a probabilistic programming system. In ADVI the user provides a Bayesian model and a dataset, nothing else. We make no conjugacy assumptions and support a broad class of models. The algorithm automatically determines an appropriate variational family and optimizes the variational objective. We compare ADVI to MCMC sampling across hierarchical generalized linear models, nonconjugate matrix factorization, and a mixture model. We train the mixture model on a quarter million images. With ADVI we can use variational inference on any model we write in Stan.

Author Information

Alp Kucukelbir (Fero Labs / Columbia University)
Rajesh Ranganath (Princeton University)

Rajesh Ranganath is a PhD candidate in computer science at Princeton University. His research interests include approximate inference, model checking, Bayesian nonparametrics, and machine learning for healthcare. Rajesh has made several advances in variational methods, especially in popularising black-box variational inference methods that automate the process of inference by making variational inference easier to use while providing more scalable, and accurate posterior approximations. Rajesh works in SLAP group with David Blei. Before starting his PhD, Rajesh worked as a software engineer for AMA Capital Management. He obtained his BS and MS from Stanford University with Andrew Ng and Dan Jurafsky. Rajesh has won several awards and fellowships including the NDSEG graduate fellowship and the Porter Ogden Jacobus Fellowship, given to the top four doctoral students at Princeton University.

Andrew Gelman (Columbia University)
David Blei (Columbia University)

David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of the Columbia Data Science Institute. His research is in statistical machine learning, involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms for massive data. He works on a variety of applications, including text, images, music, social networks, user behavior, and scientific data. David has received several awards for his research, including a Sloan Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Foundation Award (2013). He is a fellow of the ACM.

More from the Same Authors