Timezone: »
When will a system that has performed well in the past continue to do so in the future? How do we design such systems in the presence of novel and potentially adversarial input distributions? What techniques will let us safely build and deploy autonomous systems on a scale where human monitoring becomes difficult or infeasible? Answering these questions is critical to guaranteeing the safety of emerging high stakes applications of AI, such as self-driving cars and automated surgical assistants. This workshop will bring together researchers in areas such as human-robot interaction, security, causal inference, and multi-agent systems in order to strengthen the field of reliability engineering for machine learning systems. We are interested in approaches that have the potential to provide assurances of reliability, especially as systems scale in autonomy and complexity. We will focus on four aspects — robustness (to adversaries, distributional shift, model mis-specification, corrupted data); awareness (of when a change has occurred, when the model might be mis-calibrated, etc.); adaptation (to new situations or objectives); and monitoring (allowing humans to meaningfully track the state of the system). Together, these will aid us in designing and deploying reliable machine learning systems.
Thu 11:40 p.m. - 12:00 a.m.
|
Opening Remarks
(Talk)
|
Jacob Steinhardt |
Fri 12:00 a.m. - 12:30 a.m.
|
Rules for Reliable Machine Learning
(Invited Talk)
|
Martin A Zinkevich |
Fri 12:30 a.m. - 12:45 a.m.
|
What's your ML Test Score? A rubric for ML production systems
(Contributed Talk)
|
D. Sculley |
Fri 12:45 a.m. - 1:00 a.m.
|
Poster Spotlights I
(Spotlight)
|
|
Fri 1:30 a.m. - 2:00 a.m.
|
Robust Learning and Inference
(Invited Talk)
»
Robust inference is an extension of probabilistic inference, where some of the observations may be adversarially corrupted. We limit the adversarial corruption to a finite set of modification rules. We model robust inference as a zero-sum game between an adversary, who selects a modification rule, and a predictor, who wants to accurately predict the state of nature. There are two variants of the model, one where the adversary needs to pick the modification rule in advance and one where the adversary can select the modification rule after observing the realized uncorrupted input. For both settings we derive efficient near optimal policy runs in polynomial time. Our efficient algorithms are based on methodologies for developing local computation algorithms. We also consider a learning setting where the predictor receives a set of uncorrupted inputs and their classification. The predictor needs to select a hypothesis, from a known set of hypotheses, and is tested on inputs which the adversary corrupts. We show how to utilize an ERM oracle to derive a near optimal predictor strategy, namely, picking a hypothesis that minimizes the error on the corrupted test inputs. Based on joint works with Uriel Feige, Aviad Rubinstein, Robert Schapira, Moshe Tennenholtz, Shai Vardi. |
Yishay Mansour |
Fri 2:00 a.m. - 2:30 a.m.
|
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
(Invited Talk)
|
Jennifer Hill |
Fri 2:30 a.m. - 2:45 a.m.
|
Robust Covariate Shift Classification Using Multiple Feature Views
(Contributed Talk)
|
Angie Liu |
Fri 2:45 a.m. - 3:00 a.m.
|
Poster Spotlights II
(Spotlight)
|
|
Fri 4:15 a.m. - 4:45 a.m.
|
Doug Tygar
(Invited Talk)
|
Doug Tygar |
Fri 4:45 a.m. - 5:15 a.m.
|
Adversarial Examples and Adversarial Training
(Invited Talk)
|
Ian Goodfellow |
Fri 5:15 a.m. - 5:30 a.m.
|
Summoning Demons: The Pursuit of Exploitable Bugs in Machine Learning
(Contributed Talk)
|
Octavian Suciu |
Fri 5:30 a.m. - 5:45 a.m.
|
Poster Spotlights III
(Spotlight)
|
|
Fri 5:45 a.m. - 6:30 a.m.
|
Poster Session
|
|
Fri 6:30 a.m. - 7:00 a.m.
|
Learning Reliable Objectives
(Invited Talk)
|
Anca Dragan |
Fri 7:00 a.m. - 7:30 a.m.
|
Building and Validating the AI behind the Next-Generation Aircraft Collision Avoidance System
(Invited Talk)
|
Mykel J Kochenderfer |
Fri 7:30 a.m. - 7:45 a.m.
|
Online Prediction with Selfish Experts
(Contributed Talk)
|
Okke Schrijvers |
Fri 7:45 a.m. - 8:00 a.m.
|
TensorFlow Debugger: Debugging Dataflow Graphs for Machine Learning
(Contributed Talk)
|
D. Sculley |
Fri 8:00 a.m. - 8:30 a.m.
|
What are the challenges to making machine learning reliable in practice?
(Panel Discussion)
|
Author Information
Dylan Hadfield-Menell (UC Berkeley)
Adrian Weller (University of Cambridge)
Adrian Weller is Programme Director for AI at The Alan Turing Institute, the UK national institute for data science and AI, where he is also a Turing Fellow leading work on safe and ethical AI. He is a Senior Research Fellow in Machine Learning at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he leads the project on Trust and Transparency. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. He serves on several boards including the Centre for Data Ethics and Innovation. Previously, Adrian held senior roles in finance.
David Duvenaud (University of Toronto)
Jacob Steinhardt (UC Berkeley)
Percy Liang (Stanford University)
More from the Same Authors
-
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Ode to an ODE »
Krzysztof Choromanski · Jared Quincy Davis · Valerii Likhosherstov · Xingyou Song · Jean-Jacques Slotine · Jacob Varley · Honglak Lee · Adrian Weller · Vikas Sindhwani -
2020 Poster: Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming »
Sumanth Dathathri · Krishnamurthy Dvijotham · Alexey Kurakin · Aditi Raghunathan · Jonathan Uesato · Rudy Bunel · Shreya Shankar · Jacob Steinhardt · Ian Goodfellow · Percy Liang · Pushmeet Kohli -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 Workshop: Workshop on Human-Centric Machine Learning »
Plamen P Angelov · Nuria Oliver · Adrian Weller · Manuel Rodriguez · Isabel Valera · Silvia Chiappa · Hoda Heidari · Niki Kilbertus -
2019 Poster: SPoC: Search-based Pseudocode to Code »
Sumith Kulal · Panupong Pasupat · Kartik Chandra · Mina Lee · Oded Padon · Alex Aiken · Percy Liang -
2019 Poster: On the Accuracy of Influence Functions for Measuring Group Effects »
Pang Wei Koh · Kai-Siang Ang · Hubert Teo · Percy Liang -
2019 Poster: Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models »
Yunfei Teng · Wenbo Gao · François Chalus · Anna Choromanska · Donald Goldfarb · Adrian Weller -
2019 Poster: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2019 Spotlight: Verified Uncertainty Calibration »
Ananya Kumar · Percy Liang · Tengyu Ma -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2018 Workshop: Workshop on Security in Machine Learning »
Nicolas Papernot · Jacob Steinhardt · Matt Fredrikson · Kamalika Chaudhuri · Florian Tramer -
2018 Poster: Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss »
Stephen Mussmann · Percy Liang -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Poster: Semidefinite relaxations for certifying robustness to adversarial examples »
Aditi Raghunathan · Jacob Steinhardt · Percy Liang -
2018 Poster: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2018 Oral: A Retrieve-and-Edit Framework for Predicting Structured Outputs »
Tatsunori Hashimoto · Kelvin Guu · Yonatan Oren · Percy Liang -
2017 Workshop: Aligned Artificial Intelligence »
Dylan Hadfield-Menell · Jacob Steinhardt · David Duvenaud · David Krueger · Anca Dragan -
2017 Workshop: Machine Learning and Computer Security »
Jacob Steinhardt · Nicolas Papernot · Bo Li · Chang Liu · Percy Liang · Dawn Song -
2017 Symposium: Kinds of intelligence: types, tests and meeting the needs of society »
José Hernández-Orallo · Zoubin Ghahramani · Tomaso Poggio · Adrian Weller · Matthew Crosby -
2017 Demonstration: Babble Labble: Learning from Natural Language Explanations »
Braden Hancock · Paroma Varma · Percy Liang · Christopher Ré · Stephanie Wang -
2017 Poster: From Parity to Preference-based Notions of Fairness in Classification »
Muhammad Bilal Zafar · Isabel Valera · Manuel Rodriguez · Krishna Gummadi · Adrian Weller -
2017 Poster: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Oral: Inverse Reward Design »
Dylan Hadfield-Menell · Smitha Milli · Pieter Abbeel · Stuart J Russell · Anca Dragan -
2017 Poster: The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings »
Krzysztof Choromanski · Mark Rowland · Adrian Weller -
2017 Poster: Learning Overcomplete HMMs »
Vatsal Sharan · Sham Kakade · Percy Liang · Gregory Valiant -
2017 Poster: Certified Defenses for Data Poisoning Attacks »
Jacob Steinhardt · Pang Wei Koh · Percy Liang -
2017 Poster: Uprooting and Rerooting Higher-Order Graphical Models »
Mark Rowland · Adrian Weller -
2017 Poster: Unsupervised Transformation Learning via Convex Relaxations »
Tatsunori Hashimoto · Percy Liang · John Duchi -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Symposium: Machine Learning and the Law »
Adrian Weller · Thomas D. Grant · Conrad McDonnell · Jatinder Singh -
2016 Poster: Unsupervised Risk Estimation Using Only Conditional Independence Structure »
Jacob Steinhardt · Percy Liang -
2016 Poster: Composing graphical models with neural networks for structured representations and fast inference »
Matthew Johnson · David Duvenaud · Alex Wiltschko · Ryan Adams · Sandeep R Datta -
2016 Poster: Cooperative Inverse Reinforcement Learning »
Dylan Hadfield-Menell · Stuart J Russell · Pieter Abbeel · Anca Dragan -
2016 Poster: Probing the Compositionality of Intuitive Functions »
Eric Schulz · Josh Tenenbaum · David Duvenaud · Maarten Speekenbrink · Samuel J Gershman -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan -
2015 Poster: Convolutional Networks on Graphs for Learning Molecular Fingerprints »
David Duvenaud · Dougal Maclaurin · Jorge Iparraguirre · Rafael Bombarell · Timothy Hirzel · Alan Aspuru-Guzik · Ryan Adams -
2015 Demonstration: CodaLab Worksheets for Reproducible, Executable Papers »
Percy Liang · Evelyne Viegas -
2015 Poster: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Spotlight: On-the-Job Learning with Bayesian Decision Theory »
Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning -
2015 Poster: Estimating Mixture Models via Mixtures of Polynomials »
Sida Wang · Arun Tejasvi Chaganty · Percy Liang -
2015 Poster: Learning with Relaxed Supervision »
Jacob Steinhardt · Percy Liang -
2015 Poster: Calibrated Structured Prediction »
Volodymyr Kuleshov · Percy Liang -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2014 Poster: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Oral: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Poster: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Poster: Altitude Training: Strong Bounds for Single-Layer Dropout »
Stefan Wager · William S Fithian · Sida Wang · Percy Liang -
2014 Oral: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Poster: Simple MAP Inference via Low-Rank Relaxations »
Roy Frostig · Sida Wang · Percy Liang · Christopher D Manning -
2013 Poster: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2013 Spotlight: Dropout Training as Adaptive Regularization »
Stefan Wager · Sida Wang · Percy Liang -
2012 Poster: Identifiability and Unmixing of Latent Parse Trees »
Percy Liang · Sham M Kakade · Daniel Hsu -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2011 Poster: Additive Gaussian Processes »
David Duvenaud · Hannes Nickisch · Carl Edward Rasmussen -
2009 Workshop: The Generative and Discriminative Learning Interface »
Simon Lacoste-Julien · Percy Liang · Guillaume Bouchard -
2009 Poster: Asymptotically Optimal Regularization in Smooth Parametric Models »
Percy Liang · Francis Bach · Guillaume Bouchard · Michael Jordan -
2008 Workshop: Speech and Language: Unsupervised Latent-Variable Models »
Slav Petrov · Aria Haghighi · Percy Liang · Dan Klein -
2007 Poster: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Spotlight: Agreement-Based Learning »
Percy Liang · Dan Klein · Michael Jordan -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein