Timezone: »
In neuroscience, the similarity matrix of neural activity patterns in response to different sensory stimuli or under different cognitive states reflects the structure of neural representational space. Existing methods derive point estimations of neural activity patterns from noisy neural imaging data, and the similarity is calculated from these point estimations. We show that this approach translates structured noise from estimated patterns into spurious bias structure in the resulting similarity matrix, which is especially severe when signal-to-noise ratio is low and experimental conditions cannot be fully randomized in a cognitive task. We propose an alternative Bayesian framework for computing representational similarity in which we treat the covariance structure of neural activity patterns as a hyper-parameter in a generative model of the neural data, and directly estimate this covariance structure from imaging data while marginalizing over the unknown activity patterns. Converting the estimated covariance structure into a correlation matrix offers a much less biased estimate of neural representational similarity. Our method can also simultaneously estimate a signal-to-noise map that informs where the learned representational structure is supported more strongly, and the learned covariance matrix can be used as a structured prior to constrain Bayesian estimation of neural activity patterns. Our code is freely available in Brainiak (https://github.com/IntelPNI/brainiak), a python toolkit for brain imaging analysis.
Author Information
Mingbo Cai (Princeton University)
Nicolas W Schuck (Princeton Neuroscience Institute)
Jonathan Pillow (Princeton University)
Yael Niv (Princeton University)
Yael Niv received her MA in psychobiology from Tel Aviv University and her PhD from the Hebrew University in Jerusalem, having conducted a major part of her thesis research at the Gatsby Computational Neuroscience Unit in UCL. After a short postdoc at Princeton she became faculty at the Psychology Department and the Princeton Neuroscience Institute. Her lab's research focuses on the neural and computational processes underlying reinforcement learning and decision-making in humans and animals, with a particular focus on representation learning. She recently co-founded the Rutgers-Princeton Center for Computational Cognitive Neuropsychiatry, and is currently taking the research in her lab in the direction of computational psychiatry.
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 : Non-exchangeability in Infinite Switching Linear Dynamical Systems »
Victor Geadah · Jonathan Pillow -
2022 Poster: Dynamic Inverse Reinforcement Learning for Characterizing Animal Behavior »
Zoe Ashwood · Aditi Jha · Jonathan Pillow -
2022 Poster: Extracting computational mechanisms from neural data using low-rank RNNs »
Adrian Valente · Jonathan Pillow · Srdjan Ostojic -
2021 : Learning to perceive objects by prediction »
Tushar Arora · Li Erran Li · Mingbo Cai -
2021 : Learning to perceive objects by prediction »
Tushar Arora · Li Erran Li · Mingbo Cai -
2020 : Invited Talk #7 QnA - Yael Niv »
Yael Niv · Doina Precup · Raymond Chua · Feryal Behbahani -
2020 : Invited Talk #7 Yael Niv - Latent causes, prediction errors and the organization of memory »
Yael Niv -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 : Contributed Talk #1: Learning multi-dimensional rules with probabilistic feedback via value-based serial hypothesis testing »
Mingyu Song · Ming Bo Cai · Yael Niv -
2020 Poster: High-contrast “gaudy” images improve the training of deep neural network models of visual cortex »
Benjamin Cowley · Jonathan Pillow -
2020 Poster: Identifying signal and noise structure in neural population activity with Gaussian process factor models »
Stephen Keeley · Mikio Aoi · Yiyi Yu · Spencer Smith · Jonathan Pillow -
2020 Poster: Inferring learning rules from animal decision-making »
Zoe Ashwood · Nicholas Roy · Ji Hyun Bak · Jonathan Pillow -
2019 Poster: Transfer Learning via Minimizing the Performance Gap Between Domains »
Boyu Wang · Jorge Mendez · Mingbo Cai · Eric Eaton -
2018 Poster: Scaling the Poisson GLM to massive neural datasets through polynomial approximations »
David Zoltowski · Jonathan Pillow -
2018 Poster: Efficient inference for time-varying behavior during learning »
Nicholas Roy · Ji Hyun Bak · Athena Akrami · Carlos Brody · Jonathan Pillow -
2018 Poster: Model-based targeted dimensionality reduction for neuronal population data »
Mikio Aoi · Jonathan Pillow -
2018 Poster: Power-law efficient neural codes provide general link between perceptual bias and discriminability »
Michael J Morais · Jonathan Pillow -
2018 Poster: Learning a latent manifold of odor representations from neural responses in piriform cortex »
Anqi Wu · Stan Pashkovski · Sandeep Datta · Jonathan Pillow -
2017 Invited Talk: Learning State Representations »
Yael Niv -
2017 Poster: Gaussian process based nonlinear latent structure discovery in multivariate spike train data »
Anqi Wu · Nicholas Roy · Stephen Keeley · Jonathan Pillow -
2016 Poster: Bayesian latent structure discovery from multi-neuron recordings »
Scott Linderman · Ryan Adams · Jonathan Pillow -
2016 Poster: Adaptive optimal training of animal behavior »
Ji Hyun Bak · Jung Choi · Ilana Witten · Athena Akrami · Jonathan Pillow -
2015 Poster: Convolutional spike-triggered covariance analysis for neural subunit models »
Anqi Wu · Il Memming Park · Jonathan Pillow -
2008 Poster: Learning to Use Working Memory in Partially Observable Environments through Dopaminergic Reinforcement »
Michael Todd · Yael Niv · Jonathan D Cohen -
2008 Oral: Learning to Use Working Memory in Partially Observable Environments through Dopaminergic Reinforcement »
Michael Todd · Yael Niv · Jonathan D Cohen -
2007 Workshop: Hierarchical Organization of Behavior: Computational, Psychological and Neural Perspectives (Part 2) »
Yael Niv · Matthew Botvinick · Andrew G Barto -
2007 Workshop: Hierarchical Organization of Behavior: Computational, Psychological and Neural Perspectives (Part 1) »
Yael Niv · Matthew Botvinick · Andrew G Barto