Timezone: »
Poster
Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling
Maria-Florina Balcan · Hongyang Zhang
We study the problem of recovering an incomplete $m\times n$ matrix of rank $r$ with columns arriving online over time. This is known as the problem of life-long matrix completion, and is widely applied to recommendation system, computer vision, system identification, etc. The challenge is to design provable algorithms tolerant to a large amount of noises, with small sample complexity. In this work, we give algorithms achieving strong guarantee under two realistic noise models. In bounded deterministic noise, an adversary can add any bounded yet unstructured noise to each column. For this problem, we present an algorithm that returns a matrix of a small error, with sample complexity almost as small as the best prior results in the noiseless case. For sparse random noise, where the corrupted columns are sparse and drawn randomly, we give an algorithm that exactly recovers an $\mu_0$-incoherent matrix by probability at least $1-\delta$ with sample complexity as small as $O(\mu_0rn\log(r/\delta))$. This result advances the state-of-the-art work and matches the lower bound in a worst case. We also study the scenario where the hidden matrix lies on a mixture of subspaces and show that the sample complexity can be even smaller. Our proposed algorithms perform well experimentally in both synthetic and real-world datasets.
Author Information
Maria-Florina Balcan (Carnegie Mellon University)
Hongyang Zhang (CMU)
More from the Same Authors
-
2021 Spotlight: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Provably tuning the ElasticNet across instances »
Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar -
2022 Poster: Maximizing Revenue under Market Shrinkage and Market Uncertainty »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2021 Poster: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar -
2021 Oral: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2019 Poster: Envy-Free Classification »
Maria-Florina Balcan · Travis Dick · Ritesh Noothigattu · Ariel Procaccia -
2019 Poster: Efficient Symmetric Norm Regression via Linear Sketching »
Zhao Song · Ruosong Wang · Lin Yang · Hongyang Zhang · Peilin Zhong -
2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar -
2019 Poster: Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation »
Chen Dan · Hong Wang · Hongyang Zhang · Yuchen Zhou · Pradeep Ravikumar -
2018 Poster: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2018 Spotlight: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2017 : Invited Talk: Sample and Computationally Efficient Active Learning Algorithms »
Maria-Florina Balcan -
2017 Poster: Noise-Tolerant Interactive Learning Using Pairwise Comparisons »
Yichong Xu · Hongyang Zhang · Aarti Singh · Artur Dubrawski · Kyle Miller -
2017 Poster: Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions »
Maria-Florina Balcan · Hongyang Zhang -
2016 Poster: Sample Complexity of Automated Mechanism Design »
Maria-Florina Balcan · Tuomas Sandholm · Ellen Vitercik