Timezone: »
The algorithmic advancement of synchronizing maps is important in order to solve a wide range of practice problems with possible large-scale dataset. In this paper, we provide theoretical justifications for spectral techniques for the map synchronization problem, i.e., it takes as input a collection of objects and noisy maps estimated between pairs of objects, and outputs clean maps between all pairs of objects. We show that a simple normalized spectral method that projects the blocks of the top eigenvectors of a data matrix to the map space leads to surprisingly good results. As the noise is modelled naturally as random permutation matrix, this algorithm NormSpecSync leads to competing theoretical guarantees as state-of-the-art convex optimization techniques, yet it is much more efficient. We demonstrate the usefulness of our algorithm in a couple of applications, where it is optimal in both complexity and exactness among existing methods.
Author Information
Yanyao Shen (UT Austin)
Qixing Huang (Toyota Technological Institute at Chicago)
Nati Srebro (TTI-Chicago)
Sujay Sanghavi (UT-Austin)
More from the Same Authors
-
2021 Spotlight: On the Power of Differentiable Learning versus PAC and SQ Learning »
Emmanuel Abbe · Pritish Kamath · Eran Malach · Colin Sandon · Nathan Srebro -
2021 : Exponential Family Model-Based Reinforcement Learning via Score Matching »
Gene Li · Junbo Li · Nathan Srebro · Zhaoran Wang · Zhuoran Yang -
2022 : Distributed Online and Bandit Convex Optimization »
Kumar Kshitij Patel · Aadirupa Saha · Nati Srebro · Lingxiao Wang -
2022 : Differentially Private Federated Learning with Normalized Updates »
Rudrajit Das · Abolfazl Hashemi · Sujay Sanghavi · Inderjit Dhillon -
2022 Poster: A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models »
Lijia Zhou · Frederic Koehler · Pragya Sur · Danica J. Sutherland · Nati Srebro -
2022 Poster: On Margin Maximization in Linear and ReLU Networks »
Gal Vardi · Ohad Shamir · Nati Srebro -
2022 Poster: Towards Optimal Communication Complexity in Distributed Non-Convex Optimization »
Kumar Kshitij Patel · Lingxiao Wang · Blake Woodworth · Brian Bullins · Nati Srebro -
2022 Poster: Minimax Regret for Cascading Bandits »
Daniel Vial · Sujay Sanghavi · Sanjay Shakkottai · R. Srikant -
2022 Poster: Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization »
Idan Amir · Roi Livni · Nati Srebro -
2022 Poster: Toward Understanding Privileged Features Distillation in Learning-to-Rank »
Shuo Yang · Sujay Sanghavi · Holakou Rahmanian · Jan Bakus · Vishwanathan S. V. N. -
2022 Poster: The Sample Complexity of One-Hidden-Layer Neural Networks »
Gal Vardi · Ohad Shamir · Nati Srebro -
2022 Poster: Pessimism for Offline Linear Contextual Bandits using $\ell_p$ Confidence Sets »
Gene Li · Cong Ma · Nati Srebro -
2022 Poster: Adversarially Robust Learning: A Generic Minimax Optimal Learner and Characterization »
Omar Montasser · Steve Hanneke · Nati Srebro -
2022 Poster: Understanding the Eluder Dimension »
Gene Li · Pritish Kamath · Dylan J Foster · Nati Srebro -
2022 Poster: Exponential Family Model-Based Reinforcement Learning via Score Matching »
Gene Li · Junbo Li · Anmol Kabra · Nati Srebro · Zhaoran Wang · Zhuoran Yang -
2021 Poster: On the Power of Differentiable Learning versus PAC and SQ Learning »
Emmanuel Abbe · Pritish Kamath · Eran Malach · Colin Sandon · Nathan Srebro -
2021 Oral: Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign Overfitting »
Frederic Koehler · Lijia Zhou · Danica J. Sutherland · Nathan Srebro -
2021 Poster: Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign Overfitting »
Frederic Koehler · Lijia Zhou · Danica J. Sutherland · Nathan Srebro -
2021 Poster: Representation Costs of Linear Neural Networks: Analysis and Design »
Zhen Dai · Mina Karzand · Nathan Srebro -
2021 Poster: An Even More Optimal Stochastic Optimization Algorithm: Minibatching and Interpolation Learning »
Blake Woodworth · Nathan Srebro -
2021 Poster: A Stochastic Newton Algorithm for Distributed Convex Optimization »
Brian Bullins · Kshitij Patel · Ohad Shamir · Nathan Srebro · Blake Woodworth -
2021 Poster: Nearly Horizon-Free Offline Reinforcement Learning »
Tongzheng Ren · Jialian Li · Bo Dai · Simon Du · Sujay Sanghavi -
2020 Poster: On Uniform Convergence and Low-Norm Interpolation Learning »
Lijia Zhou · Danica J. Sutherland · Nati Srebro -
2020 Poster: Reducing Adversarially Robust Learning to Non-Robust PAC Learning »
Omar Montasser · Steve Hanneke · Nati Srebro -
2020 Spotlight: On Uniform Convergence and Low-Norm Interpolation Learning »
Lijia Zhou · Danica J. Sutherland · Nati Srebro -
2020 Poster: Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy »
Edward Moroshko · Blake Woodworth · Suriya Gunasekar · Jason Lee · Nati Srebro · Daniel Soudry -
2020 Poster: Minibatch vs Local SGD for Heterogeneous Distributed Learning »
Blake Woodworth · Kumar Kshitij Patel · Nati Srebro -
2020 Spotlight: Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy »
Edward Moroshko · Blake Woodworth · Suriya Gunasekar · Jason Lee · Nati Srebro · Daniel Soudry -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Interaction Hard Thresholding: Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space »
Shuo Yang · Yanyao Shen · Sujay Sanghavi -
2019 Poster: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alex Dimakis -
2019 Spotlight: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alex Dimakis -
2019 Poster: Iterative Least Trimmed Squares for Mixed Linear Regression »
Yanyao Shen · Sujay Sanghavi -
2019 Poster: Blocking Bandits »
Soumya Basu · Rajat Sen · Sujay Sanghavi · Sanjay Shakkottai -
2019 Poster: Learning Distributions Generated by One-Layer ReLU Networks »
Shanshan Wu · Alex Dimakis · Sujay Sanghavi -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg -
2018 Poster: Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization »
Blake Woodworth · Jialei Wang · Adam Smith · Brendan McMahan · Nati Srebro -
2018 Spotlight: Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization »
Blake Woodworth · Jialei Wang · Adam Smith · Brendan McMahan · Nati Srebro -
2018 Poster: Implicit Bias of Gradient Descent on Linear Convolutional Networks »
Suriya Gunasekar · Jason Lee · Daniel Soudry · Nati Srebro -
2018 Poster: The Everlasting Database: Statistical Validity at a Fair Price »
Blake Woodworth · Vitaly Feldman · Saharon Rosset · Nati Srebro -
2018 Poster: On preserving non-discrimination when combining expert advice »
Avrim Blum · Suriya Gunasekar · Thodoris Lykouris · Nati Srebro -
2017 Poster: The Marginal Value of Adaptive Gradient Methods in Machine Learning »
Ashia C Wilson · Becca Roelofs · Mitchell Stern · Nati Srebro · Benjamin Recht -
2017 Oral: The Marginal Value of Adaptive Gradient Methods in Machine Learning »
Ashia C Wilson · Becca Roelofs · Mitchell Stern · Nati Srebro · Benjamin Recht -
2017 Poster: Stochastic Approximation for Canonical Correlation Analysis »
Raman Arora · Teodor Vanislavov Marinov · Poorya Mianjy · Nati Srebro -
2017 Poster: Exploring Generalization in Deep Learning »
Behnam Neyshabur · Srinadh Bhojanapalli · David Mcallester · Nati Srebro -
2017 Poster: Implicit Regularization in Matrix Factorization »
Suriya Gunasekar · Blake Woodworth · Srinadh Bhojanapalli · Behnam Neyshabur · Nati Srebro -
2017 Spotlight: Implicit Regularization in Matrix Factorization »
Suriya Gunasekar · Blake Woodworth · Srinadh Bhojanapalli · Behnam Neyshabur · Nati Srebro -
2016 Workshop: 3D Deep Learning »
Fisher Yu · Joseph Lim · Matthew D Fisher · Qixing Huang · Jianxiong Xiao -
2016 Poster: Tight Complexity Bounds for Optimizing Composite Objectives »
Blake Woodworth · Nati Srebro -
2016 Poster: Single Pass PCA of Matrix Products »
Shanshan Wu · Srinadh Bhojanapalli · Sujay Sanghavi · Alex Dimakis -
2016 Poster: Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis »
Weiran Wang · Jialei Wang · Dan Garber · Dan Garber · Nati Srebro -
2016 Poster: Global Optimality of Local Search for Low Rank Matrix Recovery »
Srinadh Bhojanapalli · Behnam Neyshabur · Nati Srebro -
2016 Poster: Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations »
Behnam Neyshabur · Yuhuai Wu · Russ Salakhutdinov · Nati Srebro -
2016 Poster: Equality of Opportunity in Supervised Learning »
Moritz Hardt · Eric Price · Eric Price · Nati Srebro -
2015 Poster: Convergence Rates of Active Learning for Maximum Likelihood Estimation »
Kamalika Chaudhuri · Sham Kakade · Praneeth Netrapalli · Sujay Sanghavi -
2015 Poster: Path-SGD: Path-Normalized Optimization in Deep Neural Networks »
Behnam Neyshabur · Russ Salakhutdinov · Nati Srebro -
2014 Poster: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Spotlight: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Poster: Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm »
Deanna Needell · Rachel Ward · Nati Srebro -
2014 Poster: Greedy Subspace Clustering »
Dohyung Park · Constantine Caramanis · Sujay Sanghavi -
2013 Workshop: Learning Faster From Easy Data »
Peter Grünwald · Wouter M Koolen · Sasha Rakhlin · Nati Srebro · Alekh Agarwal · Karthik Sridharan · Tim van Erven · Sebastien Bubeck -
2013 Workshop: Large Scale Matrix Analysis and Inference »
Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht -
2013 Poster: Stochastic Optimization of PCA with Capped MSG »
Raman Arora · Andrew Cotter · Nati Srebro -
2013 Poster: Phase Retrieval using Alternating Minimization »
Praneeth Netrapalli · Prateek Jain · Sujay Sanghavi -
2013 Poster: Auditing: Active Learning with Outcome-Dependent Query Costs »
Sivan Sabato · Anand D Sarwate · Nati Srebro -
2013 Poster: The Power of Asymmetry in Binary Hashing »
Behnam Neyshabur · Nati Srebro · Russ Salakhutdinov · Yury Makarychev · Payman Yadollahpour -
2012 Poster: Sparse Prediction with the $k$-Support Norm »
Andreas Argyriou · Rina Foygel · Nati Srebro -
2012 Spotlight: Sparse Prediction with the $k$-Support Norm »
Andreas Argyriou · Rina Foygel · Nati Srebro -
2012 Poster: Clustering Sparse Graphs »
Yudong Chen · Sujay Sanghavi · Huan Xu -
2012 Poster: Matrix reconstruction with the local max norm »
Rina Foygel · Nati Srebro · Russ Salakhutdinov -
2011 Poster: Beating SGD: Learning SVMs in Sublinear Time »
Elad Hazan · Tomer Koren · Nati Srebro -
2011 Poster: Better Mini-Batch Algorithms via Accelerated Gradient Methods »
Andrew Cotter · Ohad Shamir · Nati Srebro · Karthik Sridharan -
2011 Poster: On the Universality of Online Mirror Descent »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2011 Poster: Learning with the weighted trace-norm under arbitrary sampling distributions »
Rina Foygel · Russ Salakhutdinov · Ohad Shamir · Nati Srebro -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Session: Spotlights Session 11 »
Nati Srebro -
2010 Session: Oral Session 13 »
Nati Srebro -
2010 Poster: Tight Sample Complexity of Large-Margin Learning »
Sivan Sabato · Nati Srebro · Naftali Tishby -
2010 Poster: Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm »
Russ Salakhutdinov · Nati Srebro -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Practical Large-Scale Optimization for Max-norm Regularization »
Jason D Lee · Benjamin Recht · Russ Salakhutdinov · Nati Srebro · Joel A Tropp -
2010 Poster: Robust PCA via Outlier Pursuit »
Huan Xu · Constantine Caramanis · Sujay Sanghavi -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Smoothness, Low Noise and Fast Rates »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2009 Workshop: Understanding Multiple Kernel Learning Methods »
Brian McFee · Gert Lanckriet · Francis Bach · Nati Srebro -
2009 Poster: Statistical Analysis of Semi-Supervised Learning: The Limit of Infinite Unlabelled Data »
Boaz Nadler · Nati Srebro · Xueyuan Zhou -
2009 Spotlight: Statistical Analysis of Semi-Supervised Learning: The Limit of Infinite Unlabelled Data »
Boaz Nadler · Nati Srebro · Xueyuan Zhou -
2008 Poster: Fast Rates for Regularized Objectives »
Karthik Sridharan · Shai Shalev-Shwartz · Nati Srebro -
2007 Spotlight: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Linear programming analysis of loopy belief propagation for weighted matching »
Sujay Sanghavi · Dmitry Malioutov · Alan S Willsky