Timezone: »
We propose the coupled generative adversarial nets (CoGAN) framework for generating pairs of corresponding images in two different domains. The framework consists of a pair of generative adversarial nets, each responsible for generating images in one domain. We show that by enforcing a simple weight-sharing constraint, the CoGAN learns to generate pairs of corresponding images without existence of any pairs of corresponding images in the two domains in the training set. In other words, the CoGAN learns a joint distribution of images in the two domains from images drawn separately from the marginal distributions of the individual domains. This is in contrast to the existing multi-modal generative models, which require corresponding images for training. We apply the CoGAN to several pair image generation tasks. For each task, the CoGAN learns to generate convincing pairs of corresponding images. We further demonstrate the applications of the CoGAN framework for the domain adaptation and cross-domain image generation tasks.
Author Information
Ming-Yu Liu (MERL)
Oncel Tuzel (Mitsubishi Electric Research Labs (MERL))
More from the Same Authors
-
2022 : APE: Aligning Pretrained Encoders to Quickly Learn Aligned Multimodal Representations »
Elan Rosenfeld · Preetum Nakkiran · Hadi Pouransari · Oncel Tuzel · Fartash Faghri -
2019 Poster: Data Parameters: A New Family of Parameters for Learning a Differentiable Curriculum »
Shreyas Saxena · Oncel Tuzel · Dennis DeCoste -
2018 Poster: Context-aware Synthesis and Placement of Object Instances »
Donghoon Lee · Sifei Liu · Jinwei Gu · Ming-Yu Liu · Ming-Hsuan Yang · Jan Kautz -
2018 Poster: Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Jun-Yan Zhu · Guilin Liu · Andrew Tao · Jan Kautz · Bryan Catanzaro -
2017 Poster: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Spotlight: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2014 Poster: Recursive Context Propagation Network for Semantic Scene Labeling »
Abhishek Sharma · Oncel Tuzel · Ming-Yu Liu