Timezone: »
Deep convolutional neural networks (CNNs) are successfully used in a number of applications. However, their storage and computational requirements have largely prevented their widespread use on mobile devices. Here we present an effective CNN compression approach in the frequency domain, which focuses not only on smaller weights but on all the weights and their underlying connections. By treating convolutional filters as images, we decompose their representations in the frequency domain as common parts (i.e., cluster centers) shared by other similar filters and their individual private parts (i.e., individual residuals). A large number of low-energy frequency coefficients in both parts can be discarded to produce high compression without significantly compromising accuracy. We relax the computational burden of convolution operations in CNNs by linearly combining the convolution responses of discrete cosine transform (DCT) bases. The compression and speed-up ratios of the proposed algorithm are thoroughly analyzed and evaluated on benchmark image datasets to demonstrate its superiority over state-of-the-art methods.
Author Information
Yunhe Wang (Peking University)
Chang Xu (Peking University)
Shan You
Dacheng Tao (Nanyang Technological University)
Chao Xu (Peking University)
More from the Same Authors
-
2020 Poster: SCOP: Scientific Control for Reliable Neural Network Pruning »
Yehui Tang · Yunhe Wang · Yixing Xu · Dacheng Tao · Chunjing XU · Chao Xu · Chang Xu -
2020 Poster: Kernel Based Progressive Distillation for Adder Neural Networks »
Yixing Xu · Chang Xu · Xinghao Chen · Wei Zhang · Chunjing XU · Yunhe Wang -
2020 Poster: Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets »
Kai Han · Yunhe Wang · Qiulin Zhang · Wei Zhang · Chunjing XU · Tong Zhang -
2020 Spotlight: Kernel Based Progressive Distillation for Adder Neural Networks »
Yixing Xu · Chang Xu · Xinghao Chen · Wei Zhang · Chunjing XU · Yunhe Wang -
2020 Poster: Residual Distillation: Towards Portable Deep Neural Networks without Shortcuts »
Guilin Li · Junlei Zhang · Yunhe Wang · Chuanjian Liu · Matthias Tan · Yunfeng Lin · Wei Zhang · Jiashi Feng · Tong Zhang -
2020 Poster: UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging »
Chu Zhou · Hang Zhao · Jin Han · Chang Xu · Chao Xu · Tiejun Huang · Boxin Shi -
2020 Poster: Searching for Low-Bit Weights in Quantized Neural Networks »
Zhaohui Yang · Yunhe Wang · Kai Han · Chunjing XU · Chao Xu · Dacheng Tao · Chang Xu -
2019 Poster: Positive-Unlabeled Compression on the Cloud »
Yixing Xu · Yunhe Wang · Hanting Chen · Kai Han · Chunjing XU · Dacheng Tao · Chang Xu -
2019 Poster: Learning from Bad Data via Generation »
Tianyu Guo · Chang Xu · Boxin Shi · Chao Xu · Dacheng Tao -
2018 Poster: Learning Versatile Filters for Efficient Convolutional Neural Networks »
Yunhe Wang · Chang Xu · Chunjing XU · Chao Xu · Dacheng Tao