Timezone: »
Graphical models with latent count variables arise in a number of fields. Standard exact inference techniques such as variable elimination and belief propagation do not apply to these models because the latent variables have countably infinite support. As a result, approximations such as truncation or MCMC are employed. We present the first exact inference algorithms for a class of models with latent count variables by developing a novel representation of countably infinite factors as probability generating functions, and then performing variable elimination with generating functions. Our approach is exact, runs in pseudo-polynomial time, and is much faster than existing approximate techniques. It leads to better parameter estimates for problems in population ecology by avoiding error introduced by approximate likelihood computations.
Author Information
Kevin Winner (UMass CICS)
Daniel Sheldon (University of Massachusetts Amherst)
More from the Same Authors
-
2022 Spotlight: Kernel Interpolation with Sparse Grids »
Mohit Yadav · Daniel Sheldon · Cameron Musco -
2022 Poster: Kernel Interpolation with Sparse Grids »
Mohit Yadav · Daniel Sheldon · Cameron Musco -
2021 Poster: Relaxed Marginal Consistency for Differentially Private Query Answering »
Ryan McKenna · Siddhant Pradhan · Daniel Sheldon · Gerome Miklau -
2020 Poster: Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization »
Abhinav Agrawal · Daniel Sheldon · Justin Domke -
2020 Poster: Permute-and-Flip: A new mechanism for differentially private selection »
Ryan McKenna · Daniel Sheldon -
2020 Spotlight: Permute-and-Flip: A new mechanism for differentially private selection »
Ryan McKenna · Daniel Sheldon -
2019 Poster: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Spotlight: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Poster: Differentially Private Bayesian Linear Regression »
Garrett Bernstein · Daniel Sheldon -
2018 Poster: Differentially Private Bayesian Inference for Exponential Families »
Garrett Bernstein · Daniel Sheldon -
2018 Poster: Importance Weighting and Variational Inference »
Justin Domke · Daniel Sheldon -
2018 Poster: Inferring Latent Velocities from Weather Radar Data using Gaussian Processes »
Rico Angell · Daniel Sheldon -
2014 Poster: Stochastic Network Design in Bidirected Trees »
Xiaojian Wu · Daniel Sheldon · Shlomo Zilberstein -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2011 Poster: Collective Graphical Models »
Daniel Sheldon · Thomas Dietterich -
2007 Spotlight: Collective Inference on Markov Models for Modeling Bird Migration »
Daniel Sheldon · M.A. Saleh Elmohamed · Dexter Kozen -
2007 Poster: Collective Inference on Markov Models for Modeling Bird Migration »
Daniel Sheldon · M.A. Saleh Elmohamed · Dexter Kozen