Timezone: »
Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity and flexibility in this approach have expanded what kinds of models can be trained. However, as a proposal for the posterior, the capacity of the recognition network is limited, which can constrain the representational power of the generative model and increase the variance of Monte Carlo estimates. To address these issues, we introduce an iterative refinement procedure for improving the approximate posterior of the recognition network and show that training with the refined posterior is competitive with state-of-the-art methods. The advantages of refinement are further evident in an increased effective sample size, which implies a lower variance of gradient estimates.
Author Information
devon Hjelm (University of New Mexico)
Russ Salakhutdinov (University of Toronto)
Kyunghyun Cho (University of Montreal)
Kyunghyun Cho is an associate professor of computer science and data science at New York University and a research scientist at Facebook AI Research. He was a postdoctoral fellow at the Université de Montréal until summer 2015 under the supervision of Prof. Yoshua Bengio, and received PhD and MSc degrees from Aalto University early 2014 under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
Nebojsa Jojic (Microsoft Research)
Vince Calhoun (Mind Research Network)
Junyoung Chung (University of Montreal)
More from the Same Authors
-
2020 Poster: Weakly-Supervised Reinforcement Learning for Controllable Behavior »
Lisa Lee · Ben Eysenbach · Russ Salakhutdinov · Shixiang (Shane) Gu · Chelsea Finn -
2020 Poster: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Ben Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Poster: A Closer Look at Accuracy vs. Robustness »
Yao-Yuan Yang · Cyrus Rashtchian · Hongyang Zhang · Russ Salakhutdinov · Kamalika Chaudhuri -
2020 Poster: Planning with General Objective Functions: Going Beyond Total Rewards »
Ruosong Wang · Peilin Zhong · Simon Du · Russ Salakhutdinov · Lin Yang -
2020 Oral: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Ben Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Poster: On Reward-Free Reinforcement Learning with Linear Function Approximation »
Ruosong Wang · Simon Du · Lin Yang · Russ Salakhutdinov -
2020 Poster: Object Goal Navigation using Goal-Oriented Semantic Exploration »
Devendra Singh Chaplot · Dhiraj Prakashchand Gandhi · Abhinav Gupta · Russ Salakhutdinov -
2020 Poster: Neural Methods for Point-wise Dependency Estimation »
Yao-Hung Hubert Tsai · Han Zhao · Makoto Yamada · Louis-Philippe Morency · Russ Salakhutdinov -
2020 Poster: Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension »
Ruosong Wang · Russ Salakhutdinov · Lin Yang -
2020 Spotlight: Neural Methods for Point-wise Dependency Estimation »
Yao-Hung Hubert Tsai · Han Zhao · Makoto Yamada · Louis-Philippe Morency · Russ Salakhutdinov -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 Workshop: Context and Compositionality in Biological and Artificial Neural Systems »
Javier Turek · Shailee Jain · Alexander Huth · Leila Wehbe · Emma Strubell · Alan Yuille · Tal Linzen · Christopher Honey · Kyunghyun Cho -
2019 Workshop: Sets and Partitions »
Nicholas Monath · Manzil Zaheer · Andrew McCallum · Ari Kobren · Junier Oliva · Barnabas Poczos · Ruslan Salakhutdinov -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Poster: Can Unconditional Language Models Recover Arbitrary Sentences? »
Nishant Subramani · Samuel Bowman · Kyunghyun Cho -
2019 Oral: XLNet: Generalized Autoregressive Pretraining for Language Understanding »
Zhilin Yang · Zihang Dai · Yiming Yang · Jaime Carbonell · Russ Salakhutdinov · Quoc V Le -
2019 Poster: Learning Neural Networks with Adaptive Regularization »
Han Zhao · Yao-Hung Hubert Tsai · Russ Salakhutdinov · Geoffrey Gordon -
2019 Poster: Search on the Replay Buffer: Bridging Planning and Reinforcement Learning »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2019 Poster: Learning Data Manipulation for Augmentation and Weighting »
Zhiting Hu · Bowen Tan · Russ Salakhutdinov · Tom Mitchell · Eric Xing -
2019 Poster: Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels »
Simon Du · Kangcheng Hou · Russ Salakhutdinov · Barnabas Poczos · Ruosong Wang · Keyulu Xu -
2019 Poster: Mixtape: Breaking the Softmax Bottleneck Efficiently »
Zhilin Yang · Thang Luong · Russ Salakhutdinov · Quoc V Le -
2019 Poster: Deep Gamblers: Learning to Abstain with Portfolio Theory »
Liu Ziyin · Zhikang Wang · Paul Pu Liang · Russ Salakhutdinov · Louis-Philippe Morency · Masahito Ueda -
2019 Poster: Multiple Futures Prediction »
Charlie Tang · Russ Salakhutdinov -
2019 Poster: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2019 Spotlight: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2019 Tutorial: Imitation Learning and its Application to Natural Language Generation »
Kyunghyun Cho · Hal Daumé III -
2018 Workshop: Emergent Communication Workshop »
Jakob Foerster · Angeliki Lazaridou · Ryan Lowe · Igor Mordatch · Douwe Kiela · Kyunghyun Cho -
2018 Poster: Loss Functions for Multiset Prediction »
Sean Welleck · Zixin Yao · Yu Gai · Jialin Mao · Zheng Zhang · Kyunghyun Cho -
2018 Poster: How Many Samples are Needed to Estimate a Convolutional Neural Network? »
Simon Du · Yining Wang · Xiyu Zhai · Sivaraman Balakrishnan · Russ Salakhutdinov · Aarti Singh -
2018 Poster: Deep Generative Models with Learnable Knowledge Constraints »
Zhiting Hu · Zichao Yang · Russ Salakhutdinov · LIANHUI Qin · Xiaodan Liang · Haoye Dong · Eric Xing -
2018 Poster: GLoMo: Unsupervised Learning of Transferable Relational Graphs »
Zhilin Yang · Jake Zhao · Bhuwan Dhingra · Kaiming He · William Cohen · Russ Salakhutdinov · Yann LeCun -
2017 Workshop: Emergent Communication Workshop »
Jakob Foerster · Igor Mordatch · Angeliki Lazaridou · Kyunghyun Cho · Douwe Kiela · Pieter Abbeel -
2017 Workshop: Deep Learning: Bridging Theory and Practice »
Sanjeev Arora · Maithra Raghu · Russ Salakhutdinov · Ludwig Schmidt · Oriol Vinyals -
2017 Oral: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Deep Sets »
Manzil Zaheer · Satwik Kottur · Siamak Ravanbakhsh · Barnabas Poczos · Ruslan Salakhutdinov · Alexander Smola -
2017 Poster: Good Semi-supervised Learning That Requires a Bad GAN »
Zihang Dai · Zhilin Yang · Fan Yang · William Cohen · Ruslan Salakhutdinov -
2017 Poster: GibbsNet: Iterative Adversarial Inference for Deep Graphical Models »
Alex Lamb · R Devon Hjelm · Yaroslav Ganin · Joseph Paul Cohen · Aaron Courville · Yoshua Bengio -
2017 Poster: Saliency-based Sequential Image Attention with Multiset Prediction »
Sean Welleck · Jialin Mao · Kyunghyun Cho · Zheng Zhang -
2016 Poster: End-to-End Goal-Driven Web Navigation »
Rodrigo Nogueira · Kyunghyun Cho -
2016 Poster: Architectural Complexity Measures of Recurrent Neural Networks »
Saizheng Zhang · Yuhuai Wu · Tong Che · Zhouhan Lin · Roland Memisevic · Russ Salakhutdinov · Yoshua Bengio -
2016 Poster: Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations »
Behnam Neyshabur · Yuhuai Wu · Russ Salakhutdinov · Nati Srebro -
2016 Poster: On Multiplicative Integration with Recurrent Neural Networks »
Yuhuai Wu · Saizheng Zhang · Ying Zhang · Yoshua Bengio · Russ Salakhutdinov -
2016 Poster: Review Networks for Caption Generation »
Zhilin Yang · Ye Yuan · Yuexin Wu · William Cohen · Russ Salakhutdinov -
2016 Poster: Stochastic Variational Deep Kernel Learning »
Andrew Wilson · Zhiting Hu · Russ Salakhutdinov · Eric Xing -
2015 Workshop: Multimodal Machine Learning »
Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2015 Poster: Learning Wake-Sleep Recurrent Attention Models »
Jimmy Ba · Russ Salakhutdinov · Roger Grosse · Brendan J Frey -
2015 Spotlight: Learning Wake-Sleep Recurrent Attention Models »
Jimmy Ba · Russ Salakhutdinov · Roger Grosse · Brendan J Frey -
2015 Spotlight: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2015 Poster: Path-SGD: Path-Normalized Optimization in Deep Neural Networks »
Behnam Neyshabur · Russ Salakhutdinov · Nati Srebro -
2015 Poster: Rate-Agnostic (Causal) Structure Learning »
Sergey Plis · David Danks · Cynthia Freeman · Vince Calhoun -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Poster: Learning Generative Models with Visual Attention »
Charlie Tang · Nitish Srivastava · Russ Salakhutdinov -
2014 Poster: A Multiplicative Model for Learning Distributed Text-Based Attribute Representations »
Jamie Kiros · Richard Zemel · Russ Salakhutdinov -
2014 Poster: On the Number of Linear Regions of Deep Neural Networks »
Guido F Montufar · Razvan Pascanu · Kyunghyun Cho · Yoshua Bengio -
2014 Demonstration: Toronto Deep Learning »
Jamie Kiros · Russ Salakhutdinov · Nitish Srivastava · Charlie Tang -
2014 Demonstration: Neural Machine Translation »
Bart van Merriënboer · Kyunghyun Cho · Dzmitry Bahdanau · Yoshua Bengio -
2014 Oral: Learning Generative Models with Visual Attention »
Charlie Tang · Nitish Srivastava · Russ Salakhutdinov -
2014 Poster: Iterative Neural Autoregressive Distribution Estimator NADE-k »
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio -
2013 Workshop: Deep Learning »
Yoshua Bengio · Hugo Larochelle · Russ Salakhutdinov · Tomas Mikolov · Matthew D Zeiler · David Mcallester · Nando de Freitas · Josh Tenenbaum · Jian Zhou · Volodymyr Mnih -
2013 Poster: Documents as multiple overlapping windows into grids of counts »
Alessandro Perina · Nebojsa Jojic · Manuele Bicego · Andrzej Truski -
2013 Poster: A Comparative Framework for Preconditioned Lasso Algorithms »
Fabian L Wauthier · Nebojsa Jojic · Michael Jordan -
2013 Poster: One-shot learning by inverting a compositional causal process »
Brenden M Lake · Russ Salakhutdinov · Josh Tenenbaum -
2013 Demonstration: Making Smooth Topical Connections on Touch Devices »
Nebojsa Jojic · Alessandro Perina · Andrzej Truski -
2013 Poster: Learning Stochastic Feedforward Neural Networks »
Charlie Tang · Russ Salakhutdinov -
2013 Poster: Discriminative Transfer Learning with Tree-based Priors »
Nitish Srivastava · Russ Salakhutdinov -
2013 Poster: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Oral: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Poster: The Power of Asymmetry in Binary Hashing »
Behnam Neyshabur · Nati Srebro · Russ Salakhutdinov · Yury Makarychev · Payman Yadollahpour -
2012 Poster: Hamming Distance Metric Learning »
Mohammad Norouzi · Russ Salakhutdinov · David Fleet -
2012 Poster: Matrix reconstruction with the local max norm »
Rina Foygel · Nati Srebro · Russ Salakhutdinov -
2012 Poster: Multimodal Learning with Deep Boltzmann Machines »
Nitish Srivastava · Russ Salakhutdinov -
2012 Poster: A Better Way to Pre-Train Deep Boltzmann Machines »
Russ Salakhutdinov · Geoffrey E Hinton -
2012 Oral: Multimodal Learning with Deep Boltzmann Machines »
Nitish Srivastava · Russ Salakhutdinov -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Daniel Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Workshop: Challenges in Learning Hierarchical Models: Transfer Learning and Optimization »
Quoc V. Le · Marc'Aurelio Ranzato · Russ Salakhutdinov · Josh Tenenbaum · Andrew Y Ng -
2011 Poster: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2011 Spotlight: Learning to Learn with Compound HD Models »
Russ Salakhutdinov · Josh Tenenbaum · Antonio Torralba -
2011 Poster: Learning with the weighted trace-norm under arbitrary sampling distributions »
Rina Foygel · Russ Salakhutdinov · Ohad Shamir · Nati Srebro -
2011 Poster: Transfer Learning by Borrowing Examples »
Joseph Lim · Russ Salakhutdinov · Antonio Torralba -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Spotlight: Exact inference and learning for cumulative distribution functions on loopy graphs »
Jim C Huang · Nebojsa Jojic · Christopher Meek -
2010 Poster: Exact inference and learning for cumulative distribution functions on loopy graphs »
Jim C Huang · Nebojsa Jojic · Christopher Meek -
2010 Poster: Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm »
Russ Salakhutdinov · Nati Srebro -
2010 Poster: Practical Large-Scale Optimization for Max-norm Regularization »
Jason D Lee · Benjamin Recht · Russ Salakhutdinov · Nati Srebro · Joel A Tropp -
2010 Poster: Structural epitome: a way to summarize one’s visual experience »
Nebojsa Jojic · Alessandro Perina · Vittorio Murino -
2009 Workshop: Approximate Learning of Large Scale Graphical Models »
Russ Salakhutdinov · Amir Globerson · David Sontag -
2009 Poster: Replicated Softmax: an Undirected Topic Model »
Russ Salakhutdinov · Geoffrey E Hinton -
2009 Poster: Learning in Markov Random Fields using Tempered Transitions »
Russ Salakhutdinov -
2009 Poster: Free energy score space »
Alessandro Perina · Marco Cristani · Umberto Castellani · Vittorio Murino · Nebojsa Jojic -
2009 Poster: Modelling Relational Data using Bayesian Clustered Tensor Factorization »
Ilya Sutskever · Russ Salakhutdinov · Josh Tenenbaum -
2008 Poster: Evaluating probabilities under high-dimensional latent variable models »
Iain Murray · Russ Salakhutdinov -
2008 Spotlight: Evaluating probabilities under high-dimensional latent variable models »
Iain Murray · Russ Salakhutdinov -
2007 Poster: Probabilistic Matrix Factorization »
Russ Salakhutdinov · Andriy Mnih -
2007 Oral: Probabilistic Matrix Factorization »
Russ Salakhutdinov · Andriy Mnih -
2007 Poster: Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes »
Russ Salakhutdinov · Geoffrey E Hinton